

Modelica-Based Dynamic Modeling of a Solar-Powered Ground Source Heat Pump System: A Preliminary Case Study

Zheng O'Neill, PhD, PE The University of Alabama, Tuscaloosa, AL October 9th 2018

The American Modelica Conference 2018, Oct. 9-10, 2018 in Cambridge, MA

Outline

- Introduction
- Test rig
- Modeling
- Preliminary Results
- Conclusions and Future work

Ground Source Heat Pump (GSHP) System

- Most efficient system in the market
- Ground Coupled
- Surface Water
- Ground Water
 - Close-loop
 - Open-loop

Solar-Powered GSHP

Two battery banks
Heat pump

• Weather Station

Measurements

Position	Sensor				
Ground Water Inlet (from the	Temperature				
well)	Sensor 1				Heat Pump
Ground Water Outlet (to the	Temperature				
well)	Sensor 2	Solar Panels			
Circulate Water Inlet (to the	Temperature	*			
GSHP)	Sensor 3				
Circulate Water Outlet	Temperature		National		
(from the GSHP)	Sensor 4	Current	Instrument	Power Transducer	
Air Intake (to the GSHP)	Temperature		NI PXIe-1078		
	Sensor 5				
Air Outlet (from the GSHP)	Temperature				
	Sensor 6				
Power Sensor (GSHP)	Power Transducer		Voltage	2	
Solar Panel Input Voltage	Voltage Divider	Batteries	Divider	isto	Invertor
Solar Panel Input Current	Current Shunt			Res	

 Power consumption of the heat pump

Data Acquisition System

- Specifications (National
- Instrument 32 channels with 0.3 °C accuracy
- Voltage module has two analogy outputs, 16-bit resolution and a range of \pm 10 Volt
- Sampling rate is once per second

GSHP – The Focus of This Paper

• A rotary type compressor, rated cooling capacity is 2,638 Watts.

Ground Water In • R-410a as the refrigerant

- The refrigerant pressure is 3,103 kPa at the condenser side, and 1,724 kPa at the evaporator side.
- Air side, the maximum external static pressure is 17,436 Pa.
- The rated operating voltage is 208 Volts, and the short-circuit current rating is 5 kA at 600V.

Modelcia Modeling

Component	Model Descriptions			
Condenser	Heat exchanger; Counterflow;			
	R410a as working fluid; Water as liquid			
Evaporator	Heat exchanger; Counterflow;			
	R410a as working fluid;Air as liquid			
Expansion Valve	Simplified Thermal Expansion Valve model,			
	based on compressible flow valve in IEC			
	534/ISA S.75 standards			
Compressor	Fixed displacement compressor with speed			
	and pressure ratio dependency			
Liquid Source	Modelon.Media.PreDefined.Liquids.Incon			
	essibleWater is the Medium on condenser			
	side;			
	VaporCycle.Media.Air.MoistAirNoFreezing is			
	the medium on evaporator side.			
Liquid Sink	Modelon.Media.PreDefined.Liquids.Incompr			
	essibleWater is the Medium on condenser			
	side;			
	VaporCycle.Media.Air.MoistAirNoFreezing is			
	the medium on evaporator side.			

- Dymola (version 2017 FD01)
- Modelica library-Vapor Cycle Library (Modelon, 2018)

Modeling Assumptions

Constant Temperature for the heat sink

- The water inlet temperature on the condenser side
- The heat source (i.e., the air inlet temperature on the evaporator side).
- Modelica model didn't include the blower fan
 - A constant fan power consumption was assumed to get the total power consumption of the GHSP unit from the

Results – Testing and Modeling Conditions

- The comparisons between the actual measurements and simulation results were based on a three-hour testing.
- The GSHP system was operating in a cooling mode.
- The environment temperature was controlled at 22 °C, while the discharge air temperature set point of the GSHP system was 16 °C. The GSHP system maintained in operation during the three-hour test.
- The flow rate of circulation groundwater was measured at 0.454 m³/hr, while the air flow rate was maintained at 0.134 m³/sec.
- The measured temperature values include inlet water temperature at the condenser side and inlet air temperature at the evaporators side was used as the inputs to the Modelica model.
- Other settings were referred to the GHSP manufacturer's specifications.

Results- Comparisons (Model vs. Experiment)

Category	CVRMSE*	NMBE*
Power	12.92%	12.86%
Consumption		
Cooling Capacity	12.29%	7.42%
СОР	19.69%	17.99%

*CVRMSE is the coefficient of variation of the root mean square error * NMBE is the normalized mean bias error

$$HP + q_{rej} + q_{cooling} = 0$$

$$q_{rej} = \dot{m}_{water} \times C_p \times \Delta T_{CL}$$

$$COP_{HP} = \frac{q_{cooling}}{P_{HP}}$$

Conclusions

 Preliminary results from the Modelica-based modeling of a GSHP unit. The model predictions were compared with measurements from the test rig. The current Modelica-based model can simulate the performances of the GSHP unit. The output trends for the Modelica simulation match with those

Ongoing and Future Work-1

- Modelica model of the supply side of solar panels, which will use the actual weather data as the input to estimate the power generation of the solar panels.
- On the groundwater side, a Modelica model of the groundwater well will be developed so the impact of ground (e.g., thermal conductivity and hydraulic conductivity) can be further analyzed.
- A comprehensive system model of solar-powered ground source heat pump system will be validated using the measurement from the test rig. Testing data will be collected for a longer period for both heating and cooling modes.
- Dynamic inputs such as weather information, room air and groundwater temperature profiles will be used as inputs in the full scaled model to study the dynamic performance of the system.

Ongoing and Future Work-2

- The dynamic system model will be used for the following applications:
 - Model-based control of the solar PV generation system and ground source heat pump system, and the combination of these systems for a better building to grid integration.
 - GSHP controller design using this dynamic model in the Hardwarein-the-Loop (HIL) testing.

Ongoing and Future work-3

Modeling and validation of a residential hybrid GSHP system

- Borehole model
- Heat pump model
- Solar PV model
- Dry cooler model

Thank You! Questions and Discussions

Zheng O'Neill, PhD, PE Department of Mechanical Engineering Department of Civil, Construction and Environmental Engineering The University of Alabama Box 870276 Tuscaloosa, AL 35487-0276 USA Ph: (205) 348-6982 | Fax: (205) 348-6419 Email:

Qian, D., and Z.D. O'Neill. 2018. Modelica-Based Dynamic Modeling of a Solar-Powered Ground Source Heat Pump System: A Preliminary Case Study. *American Modelica Conference 2018*. Cambridge, MA, October 9-10, 2018.