
!1

Control Description Language

Michael Wetter

Milica Grahovac

Michael Wetter

October 9, 2018

Controls are the Achilles heel of commercial buildings, because
there is no end-to-end quality control, and no standardization
for control logic

 2

Control-related problems (Ardehali, Smith 2002). 
While the study is not recent, discussions with
mechanical designers and operators of large buildings
confirmed that correct implementation of the control
intent remains a problem.

More than 1 quad/yr of energy is wasted in the US
because control sequences are poorly specified and
implemented in commercial buildings.

The process to specify, implement and verify controls
sequences is often only partially successful, with efficiency
being the most difficult part to quantify and realize.

This limits adoption of advanced control sequences as
• anticipated energy savings are not achieved,
• their expected ROI may be missed, and
• engineers are exposed to risk due to malfunctioning

system integration, often leading to oversized or
overengineered systems.

Impact

!3

Would you be concerned if your model were to
not account for effects that
1. Can cause 30% variability?
2. Can be used to reduce energy by 30%?

Vision

What if

1. mechanical designers can import in building energy modeling tools best-in-class control
sequences from ASHRAE-vetted guidelines?

2. mechanical designers can adapt these sequences to their project, and then exported
them digitally for bidding and implementation, together with verification tests?

3. control providers could automatically implement these sequences in their building
automation systems?

4. commissioning agents could verify formally that the sequences are implemented as
specified? 

 4

OpenBuildingControl: Bridge silos between BEM and controls,
and realize energy savings of advanced controls

BACnet standardizes communication, OpenBuildingControl will standardize control sequences & verification tests:
• basic functional building blocks
• composition rules for control sequences, and
• for bidding and automatic implementation
• declaration of functional verification tests criteria.

Key Innovations

Digital, executable control specification, called Control Description Language (CDL), enabling
• Sharing of best-practice, e.g., ASHRAE Guideline 36
• Error-free implementation of the specified control sequence
• Formal process that connects design to operation
• Formal verification of design intent 5

Implement Verify against original designCodify best practice Design

Designer Control provider Commissioning agentLibrary of control
sequences
in OpenStudio

submit and deliver
controls through
code generationexport

specification verify against
design specification

import
sequence,
configure
and test

dT

failed

untested

passed

Vout

Vout

dT

Guideline 36
export
verification tests

Export of control sequences

 6http://obc.lbl.gov

Control
sequence

Verification
tests

CDL

FMU-ME

FMI Library
(C)

PyFMI
(Python)

JMI
(Java)

Sedona

Niagara

BCVTB

sMAP

other BAS
(using C)

VOLTTRON

other BAS

JSON

Repository
Control sequences &

veri�cation test
declarations

Executable
format or

speci�cation
Import

libraries
Runtime

environment

SSP

other BAS

http://obc.lbl.gov

What is the Control Description Language?
A declarative language for expressing block-diagrams for controls
(and requirements)

A graphical language for rendering these diagrams.

A library with elementary input/output blocks that should be
supported [through a translator] by CDL-compliant control providers.

Example: CDL has an adder with inputs u1 and u2, gains k1
and k2, and output 
y = k1*u1 + k2*u2.

A syntax for documenting the control blocks and diagrams.

A model of computation that describes the interaction among the
blocks.

 7

What is the Control Description Language?

 8

Allowed constructs include

• parameters

• connect statements

• hierarchical models

• basis math operations when
assigning parameters 
 
 
 

• Composite models

CDL.Logical.Hysteresis hys(
 uLow = pRel-25,
 uHigh = pRel+25)
 "Hysteresis for fan control";

CDL.Logical.Hysteresis hys(
uLow = pRel-25,
uHigh = pRel+25)
"Hysteresis for fan control";

Instances can conditionally be removed by using an if
clause. This allows, for instance, to have a single im-
plementation of an economizer enable/disable control se-
quence that can be configured to optionally take the spe-
cific enthalpy as an input signal. An example code snippet
is

parameter Boolean use_enthalpy = true
"Set to true to evaluate outdoor air

enthalpy in addition to temperature"
;

CDL.Interfaces.RealInput hOut
if use_enthalpy
"Outdoor air enthalpy";

3.6 Connectors
Blocks expose their inputs and outputs through input
and output connectors. The permissible connectors are
implemented in the package CDL.Interfaces, and
are BooleanInput, BooleanOutput, DayType-
Input, DayTypeOutput, IntegerInput, Inte-
gerOutput, RealInput and RealOutput. Day-
Type is an enumeration for working day, non-
working day and holiday.

3.7 Connections
Connections connect input to output connectors. For
scalar connectors, each input connector of a block needs to
be connected to exactly one output connector of a block.
For vectorized connectors, each (element of an) input con-
nector needs to be connected to exactly one (element of
an) output connector. Vectorized input connectors can be
connected to vectorized output connectors using one con-
nection statement, provided that they have the same num-
ber of elements.

Connections are listed after the instantiation of the
blocks in an equation section. The syntax is

connect(port_a, port_b) annotation(...);

where annotation(...) is used to declare the
graphical rendering of the connection (see Section 3.8).
The order of the connections and the order of the argu-
ments in the connect statement does not matter.

Signals shall be connected using a connect state-
ment; assigning the value of a signal in the instantiation
of the output connector is not allowed.

3.8 Annotations
Annotations follow the same rules as described in the fol-
lowing sections of the Modelica 3.3 Specification:

• §18.2 Annotations for Documentation.
• §18.6 Annotations for Graphical Objects, with the

exception of
– §18.6.7 User input, and

k=k

gain

minValue

min()

yMax

e

y

Figure 3. Example of a composite control block that outputs
y = min(k e,ymax), where k is a parameter.

• §18.8 Annotations for Version Handling.
Hence, for CDL, annotations are primarily used to graph-
ically visualize block layouts and input and output signal
connections, and to declare vendor annotations (see § 18.1
in Modelica 3.3 Specification).

3.9 Composite Blocks
CDL allows building composite blocks such as shown in
Figure 3. Composite blocks are needed to preserve group-
ing of control blocks and their connections, and are needed
for hierarchical composition of control sequences.

Composite blocks can contain other composite blocks.
Each composite block shall be stored on the file system
under the name of the composite block with the file exten-
sion .mo, and with each package name being a directory.
The name shall be an allowed Modelica class name. Ap-
pendix A shows how to declare the block shown in Fig-
ure 3.

3.10 Model of Computation
CDL uses the synchronous data flow principle and the sin-
gle assignment rule, which are defined below. The defini-
tion is adopted from and consistent with the Modelica 3.3
Specification § 8.4, and is as follows:

1. All variables keep their actual values until these val-
ues are explicitly changed. Variable values can be
accessed at any time instant.

2. Computation and communication at an event instant
does not take time.

3. Every input connector shall be connected to exactly
one output connector.

In addition, the dependency graph from inputs to out-
puts that directly depend on inputs shall be directed and
acyclic. I.e., connections that form an algebraic loop are
not allowed.

3.11 Inferred Properties
CDL has sufficient information for tools that process CDL
to generate for example point lists that list all analog tem-
perature sensors, or to verify that a pressure control sig-
nal is not connected to a temperature input of a controller.
Some, but not all, of this information can be inferred from
the CDL language described above.

Note that none of this information affects the computa-
tion of a control signal. Rather, it can be used for example

Not allowed are

• acausal connectors

• variables

• equations (except in parameter
assignments)

• anything other than “connect”
statements in equation section

• initial equation, initial algorithm and
algorithm

• use of blocks other than

• from OBC.CDL,

• composite blocks built using blocks
from OBC.CDL

• State machines

• Clocks

CDL can be used to implement open or proprietary sequences

 9

CDL

ASHRAE

G36

GSA

ARUP

ALC

The standard
to be
supported by
vendors

Custom
implementations
can be built
using the CDL
language, and
CDL blocks

GSA preferred sequences,
made available through a CDL-
complaint implementation.
Design firms can share their own
(proprietary) implementation
across their offices.
Control vendors can provide their
own specialized sequences, either
as open-source, or as compiled
(proprietary) I/O blocks.

Sequences that come out of
ASHRAE projects and can be
shared with community.

Companies are illustrative

Control sequence translation tool

 10

“modelica-json”: parse control sequences written in Modelica to JSON, and from
JSON to other format, such as html.

— different parse mode:
• “cdl”: ensure models following cdl syntax
• “modelica”: general modelica syntax

— graphical annotation
• provide graphical layout for display 

in block diagram editors (Modelica or
actual control platforms)

• generate graphical diagram for inclusion
in documentation (in svg format)

https://github.com/lbl-srg/modelica-json graphical annotation

show in Modelica tools stand-alone svg

https://github.com/lbl-srg/modelica-json

Example implementation of an ASHRAE Guideline 36
sequence

Buildings.Controls.OBC.ASHRAE.G36_PR1.TerminalUnits.Reheat.DamperValveAutogenerated documentation.

Block-diagram view.

Examples and validation tests.

Impact: Bridge silos between BEM and controls to realize
energy savings of advanced control sequences
Two similar ASHRAE-published VAV sequences
yield 30% different HVAC energy use

BEM should have tools and use a process that

• identifies and closes this 30%
performance gap,

• yields better control sequences, and

• ensures that savings are realized

 
Can you tell which of these VAV sequences
your BEM tool uses?

How do you ensure your simulation uses the
VAV sequence that will be implemented in the
building?

What do you mean if you tell a customer that
radiant systems are 20% more efficient than
VAV?

!12
base case 
(ASHRAE 2006)

Guideline 36 
(ASHRAE 2016)

HV
AC

 s
ite

 e
lec

tri
cit

y
us

e
(k

W
h/

m
2

a)

5

10

15

20

25

30

heating

sensible
cooling

latent
cooling

fan

heating

sensible
cooling

latent
cooling

fan

30%

See http://obc.lbl.gov/specification/example.html

http://obc.lbl.gov/specification/example.html

Lessons learned regarding simulation

Approach for HVAC & building model:
• Full airflow network.
• Wind pressure driven infiltration.
• All flows based on flow friction, damper positions and fan curves.
• 4,000 components, 40,000 variables (generated from high-level declarations)
• adaptive time step based on error control, state- and time-events.
Simulation using Modelica Buildings Library 5.0.0 and Dymola 2018FD01.

 13

Lessons learned regarding simulation

Oversimplifying physics can lead to problems
Fan model
• Fan with prescribed mass flow rate: Not a good idea, as fan head was 4 kPa (16 inch H20), with 10 K

temperature raise across fan because dampers opened slowly.
• Fan with prescribed head: Not a good idea as flow rates in return duct were unrealistic large (due to small flow

friction).
Using a fan with speed as input worked fine.
Heating coil
Initial simulations had very small flow rates at night when the fan was off, caused by wind pressure on the building.
This caused the heating coil to freeze as the HVAC system entrained -20 degC outside air.
Adding heat diffusion worked fine.
Properly handling hard switches
All switches can chatter due to numerical noise (or, in reality, sensor noise).
Adding hysteresis or a timer worked fine.

 14

Control verification tool “funnel”

 15

— creates funnel around reference curves,
i.e. curves around simulated trajectory

• user giving tolerance for specifying funnel size

— check control simulation outputs to see
if the curves across funnel

• identify whether simulation profile is out of
funnel, when it happens

• count how long times the simulation output
curve run out of the funnel

violation

Other usage: CI testing, similar to csv-compare https://github.com/lbl-srg/funnel

Compares time series within certain threshold. 
Allows verifying correctness of installed sequence.

Based on C (Python binding to be added), BSD licensed.

Benefits
DOE/BTO:
Potential to reduce HVAC energy by 20% to 30%, solely due to better control sequences
Have tools for dynamic assessment of energy/peak load reduction through integrated systems (HVAC, façade, grid), including
path towards hardware-in-the-loop and control deployment
Path towards development & publication of more sophisticate control sequences, such as for energy-aware, grid-flexible buildings

Mechanical designer:
Adapt, test and specify control sequences (and verification tests) for particular building
Reduce risk that building does not meet energy target due to control discrepancies

Control provider:
Faster, higher quality, error-free automated implementation
Get non-ambiguous control specification from designer

Commissioning provider:
Semi-automated verification of compliance with design intent, using formal tests from designer

ASHRAE Committee:
• Guideline 36: Formal way to test, compare and publish sequences in product-neutral way that can be digitally processed and

simulated
• Advanced Energy Design Guides: Can include energy-saving sequences in product-neutral way.

 16

Questions

!17

