

Dirt Late Model Racing Simulations in Dymola / Modelica

Nate Horn

nate.horn@claytex.com

Dirt Late Model Racing Simulations

- Claytex Background
- VeSyMA Suite (Vehicle Systems Modelling and Analysis)
- My Background
- Dirt Late Model Racing
- The Simulations
- The Challenges

Who are Claytex?

- Users of Dymola and Modelica since 1999
- Dymola distributors since 2003 (Dassault Systemes partner since 2008)
- Major customers include Automotive OEM's, suppliers and Motorsport teams (Formula 1, NASCAR, Indycar)
 - First Formula 1 customer in 2004, currently support half the grid
 - First worked with Dallara in 2008 for IndyCar
 - First NASCAR customer in 2009, currently support all the manufacturers and top teams
 - Active in a number of other series
 - Supporting Motorsport inspired academic research programs
- rFpro system integrator since 2009
 - High fidelity graphics, audio and track models
 - Claytex offer complete tool chain to run the vehicle model
 - Support ADAS and autonomous vehicle development by feeding data to sensor models

VeSyMA Suite

- Suite of Modelica libraries for Vehicle Systems Modelling and Analysis
- First available in Dymola 2018
- Core platform enables performance, fuel economy and energy analysis
 - Drive cycle simulation
- Application specific extensions provide detailed models across
 many areas
 - Engines, powertrain, vehicle dynamics, driver-in-the-loop
- Open and extendible to easily connect libraries from other developers
 - Electrified Powertrain and Battery libraries from Dassault Systemes
 - Thermal Systems library from TLK Thermo

My Background

- University of Iowa (B.S. and M.S.) in Mechanical Engineering
- Boeing Commercial Airplanes for 2 years
- Worked at Red Bull for 5 years until the operation shut down in 2011
 - Opportunity to collaborate with the Red Bull F1 team
 - First NASCAR team to use Dymola / Modelica
 - Introduced to Mike Dempsey (Owner of Claytex)
- Worked for 5 years at Chip Ganassi Racing (NASCAR program)
 - Vehicle Dynamics Group Leader
 - Simulation
 - Software
 - 7 Post Testing
 - Performance Group Manager
 - Add Aerodynamics
- Started at Claytex in February of 2017
 - Start up the US office

DLM Racing Industry / Cars / Tracks

- Started down this path to build a simulation package to use for demonstration purposes
 - Nobody in Motorsport want to share anything
 - I have background in this type of racing / simulation
- It also provided an opportunity for me to 'use' the VeSyMA suite as if I were a customer
 - Highlight areas for improvement
 - Feed these things into the Claytex ticketing system to be added / improved
- Push development forward in new areas

- Top prize payouts
 - as high as \$1,000,000 (once)
 - down to \$800 for local weekly racing events
 - 'big' races generally referred to as anything \$5k or higher to win

- The Series
 - World of Outlaws
 - Lucas Oil Series
 - UMP
 - MARS
 - Corn Belt Clash
 - MLRA

- Vehicle 2350 lbs (1066 kg)
- Engine/Transmission
 - Naturally Aspirated Carbureted
 - V8 2 valves / cyl Pushrod -Roller Cam
 - 420-440 cu inch (7.0-7.2L)
 - 900 HP (670 kW)
 - 9600 Peak RPM
 - 2 speed direct drive gearbox
- Front Suspension
 - Dual A-frame
 - Coil over
 - Rack and pinion steering

- **Rear Suspension**
 - Solid Axle "quick change"
 - 4 bar linkage on each side
 - Panhard bar
 - Torque reaction via lift arm
- Tires / Wheels
 - 15 inch diameter wheels
 - 14 inches wide
 - Multiple tire compounds legal (depending on series)
 - Tread patterns are 'cut' by team (depending on series)
 - Pressure 6-12 psi (40-80 kPa)

Differential

- Spool (locked LR to RR)

- West Liberty
 - $-\frac{1}{2}$ mile in length
 - 5 degree banking
 - Wide corners
 - Wide racing surface
- Our 'home' track in college
- Fast laptime during qualifying: 18.73 seconds
- Winner slow laptime in feature: 22 seconds
- Over 3 seconds of laptime falloff is common

The Simulations - Same Vehicle Model

- Started with the VeSyMA NASCAR vehicle
 - VehicleInterfaces Library standard
 - Swapped to Rack and Pinion steering
 - Built custom rear suspension model
 - Started with a VeSyMA aero model and customized
 - Estimated the aerodynamic model inputs based on limited information
 - Created a custom setup event (starting from NASCAR example)
- Added STL of a Body for visual reference

The Simulations - Same Vehicle Model

'Body Fixed KnC'

'Swept Sine 7P'

'MassCheck'

The Simulations - Workflow

• Representative workflow for a racing application

The Simulations - Kinematics Assembly

- Algebraic model to assemble components
 - Inputs in local part coordinates
 - Outputs in vehicle coordinates

The Simulations - Setup Event

- Closed loop adjustment simulation
 - Adjusts camber shims (camber angles)
 - Adjusts tierod lengths (toe angles)
 - Adjusts body CG x and y position (front and Is weight %)
 - Adjusts spring preloads (ride height and cross weight)
 - Adjusts ARB droplink length (ARB preload)

The Simulations - Mass Check

- Simple simulation to check the results of a Setup sim
 - If adjustments are properly applied to car it will remain static for the entire sim... if there are errors in transferring data across the car will oscillate
 - In this example, the car oscillates and settles with different wheel loads... indicating there is an issue

The Simulations - Pulldown Rig

- Pulldown rig ('pushup rig')
 - General low frequency analysis
 - Wheel rates
 - Roll rates
 - Camber gain
 - Damper to wheel motion ratios

The Simulations - 7 Post Swept Sine

- Modal analysis on a 7 post rig
 - Extract Body modes
 - Heave
 - Pitch
 - Roll
 - Other?
- Tire vertical load variation
 - Optimize Damping

The Simulations - Quasi Static

- Single State target... divided up into 5 steps
 - Note that the upper 'four bar' load is approaching zero at this point on the track

The Challenges

- Input data...
 - Reasonable spring and damper input data
 - Questionable accuracy on vehicle geometry
 - Questionable aerodynamic data
 - Questionable tire models
 - Questionable track geometry

The Challenges

- Validation data is even more scarce
 - Geometric data
 - Low frequency data (Pulldown / K&C)
 - Higher frequency data (7P)
 - On-track data
- Alternative methods
 - iPhone logging of acceleration data has proven useful
 - GoPro video is often enlightening
- "Bad data is worse than no data"
 - I would argue that some insight is better than no insight

** Credit: Damian Harty's 2017 NAMC Keynote Presentation

The Challenges - Validation Data

- West Liberty
 - ¹/₂ mile in length
 - 5 degree banking
 - Wide corners
 - Wide racing groove

- Fast time during qualifying: 18.73 seconds
- Winner slow lap in feature: 22 seconds

Entry	Imperial	SI	Mid Corner	Imperial	SI	Exit Corner	Imperial	SI
Speed	90 mph	40.2 m/s	Speed	85 mph	38.0 m/s	Speed	90 mph	40.2 m/s
Radius	425 ft	129.5 m	Radius	325 ft	99.1 m	Radius	425 ft	129.5 m
Lat Curvature	0.002353 1/ft	0.00772 1/m	Lat Curvature	0.003077 1/ft	0.010095 1/m	Lat Curvature	0.002353 1/ft	0.00772 1/m
Bank Angle	5 deg	5 deg	Bank Angle	5 deg	5 deg	Bank Angle	5 deg	5 deg
Lateral Accel	1.27 G	12.50 m/s^2	Lateral Accel	1.49 G	14.58 m/s^2	Lateral Accel	1.27 G	12.50 m/s^2
Longitudinal Accel	-0.2 G	-1.96 m/s^2	Longitudinal Accel	0 G	0.00 m/s^2	Longitudinal Accel	0.4 G	3.92 m/s^2
Vertical Accel	0 G	0.00 m/s^2	Vertical Accel	0 G	0.00 m/s^2	Vertical Accel	0 G	0.00 m/s^2

The Challenges - Validation Data

• Logged data vs 'accelerometer' reading in the simulation model

Mid Corner	Imperial	SI
Speed	85 mph	38.0 m/s
Radius	325 ft	99.1 m
Lat Curvature	0.003077 1/ft	0.010095 1/m
Bank Angle	5 deg	5 deg
Lateral Accel	1.49 G	14.58 m/s^2
Longitudinal Accel	0 G	0.00 m/s^2
Vertical Accel	0 G	0.00 m/s^2

DLM Racing Simulations - Summary

- VeSyMA was used to construct a suite of dirt late model simulations with Dymola / Modelica
- This project demonstrates the power of Dymola / Modelica as well as the usefulness of VeSyMA
- An experienced Dymola user, utilizing VeSyMA can build a set of simulations like this efficiently
- Even though many assumptions were made, the resulting simulations were useful
- Are these simulations perfect? No.
- Are these simulations helpful? Absolutely.

Dirt Late Model Racing Simulations in Dymola / Modelica

Questions / Thoughts / Comments?

Nate Horn nate.horn@claytex.com +1 (704) 951-7461

