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Introduction

Building and testing the BlueROV2 posed a slew of difficulties:
o Understanding design parameters
o Logistics of testing in bodies of water
> Necessitating multiple tests to create control strategies

These problems are common to all ROVs under construction

An underwater vehicle specific modeling framework would aid the development of ROV
designs and controls



Framework Goals

Aid the prototyping Be readily integrated Visualize prototype

and testing of vehicle with common design and test

design and controls. control and feedback results via three-
mechanisms, dimensional

specifically ROS. animation.
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URBL Field Model

The field interactions are written as dependent on the rigid
body’s characteristics

The current field implementation only accounts for buoyancy
and drag forces.

o [t thus has two functions:

. F ___Pfluid.m.g
buoyant Pbody
s -
’ fdrag *= —Vyiscosity * A-v

> To account for angular drag, the following is also added to the drag function:
Tdrag *= _kdrag "W

The functions are replaceable, thus allowing a modular
approach to upgrading the functions




URBL Propeller Template

Motivated from the designs of other underwater vehicles
modeled in other papers, as well as that of the BlueROV2

Motor
Circuit

Creates a template for propeller use:

o Has dynamics detailing thrust on body, and load torque from
water

> Has inertial mass component for interacting with ROV

o Can be implemented along any axis of motion
> Depends on EMF for actuation - source of voltage to the Q

propeller is not provided |
Frame to ROV body
Propeller Frame
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Propeller Dynamics - Thrust

Thrust can be written as follows:
° Fiprust & (UZKT(I*)

> Where w is the rotor’s angular velocity, and K;(J*) = p; — B,J"

« =Y
o J* = -
. . v
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e S SRR 1
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Figure 4: Typical thrust and torque coefficients.

Source: M. Triantafyllou. 2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49). Fall
2004. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative
Commons BY-NC-SA


https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004

Propeller Dynamics - Load Torque

The load torque on the propeller due to moving water is found via power balance:
ﬁthrust -V
l&|n

(o] 2 f—
Tioad = —

° ﬁthmst is thrust
o v is the relative velocity between the ROV and the water

° @ is the rotor’s angular velocity
> 7 is the efficiency of the power balance

To better handle when w goes to zero, this equation is rewritten by expanding the thrust
ferm:

° Tioad = —kmV(kr@ — @ - V) bgir — kigss@

° k;,ss is added to represent loss purely due to the rotor’s motion.



Propeller

| Dynamics -
&8 Modelica
T Implementation

Propeller Frame /
[




- UnderwaterRigidBodyLibrary

f standardBuoyantForce

f | standardViscousDrag
f standardViscousTorgue
- n Il;terfaces
f | partialBuoyantForce
f ) partialviscousDrag P k
f partialViscousTorque a C a g e
}_- PartialPropeller

~ [ Parts

B Structure
H BasicBodyShape
- . Controllers

~ . ROSControllerBlock_Joy

f. ROS_Controller Joystick

-0 s

b . RBFPackage

! Field




Application
of the URBL

The framework is used to model
a commercially available ROV,
the BlueROV?2 from Blue
Robotics
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Controller Derivation

The diagram shows the propeller torque and associated thrust force
orientations for all six propellers

What follows is a simple relation between propeller torque, thrust,
and reaction torque:

° T; =1,5in451 —1,cos45k

o 131 = nt,sin457 — nt, cos45k
© %)Fl = (hlxi + hlyj + hlzié) X F1

> The equations for the other propellers differ in orientation

0 0

V3 Vi Vi Va o F
0 0 0 0 n n T Fj . . . . . . .
A TR P PR | R This results in the invertible matrix relating the six propeller torques
i Fh) ol _N{) s R to composite forces and torques, used to control the ROV’s
ATV A T e e [T AT propellers
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Simulation Results - Constant Motor Input




Control Value Input
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Simulation Results — Motor Inputs via ROS




Conclusions

The URBL was stably constructed to provide basic ROV modeling
components, as well as ready-to-use integration with ROS

The URBL was successfully used to model an existing commercially
available ROV design, the BlueROV?2.

Library
Improvements

eViscous drag
representation

e Hydrodynamic
function replaceability

Future Work:

Model
Improvements
e Redraw model as

consolidated rigid
body

Validation
Improvements

¢ |ncrease motion test
complexity

e Compare against
experimental data
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Velocity Comparison of Data Set: 15.2 | FMU: SimplifiedBlueROV2.fmu
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Comparing the Simulation against Data
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