

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts

On Closure Relations for

Dynamic Vapor Compression Cycle Models

Christopher Laughman Hongtao Qiao

9 October 2018

Model-Based System Design

Model-based heat pump design

- Faster, cheaper development
- Systematically design multivariable dynamics

Are emergent dynamics from composed models consistent with experimental data?

Zero Energy Building Growth

Fig 1. The Buildings List includes nearly 500 projects and is on a steep curve upward, having increased over 700% since 2012.

© MERL 2018/10/09

The Challenge of Closure Relations

- HTC or frictional dP
- Not formulated for computational efficiency – can be problematic
- What are the tradeoffs of different approaches?

Sieder-Tate heat transfer correlation

$$\alpha D/k = 0.027 R e_D^{4/5} P r^{1/3} \left(\frac{\mu}{\mu_{surf}}\right)^{0.14}$$

BLT system Jacobian

Vapor Compression Cycle Model

- System dynamics are dominated by heat exchangers
- Refrigerant properties defined via technical equation of state
 - Pressure and specific enthalpy
- Compressor and valve performance curves defined by the user

Heat Exchanger Models

- Finite volume dynamic HEX model
 -16 volumes / HEX
- 1-D pipe wall model with dehumidification
- Ideal gas mixture for moist air

Conservation equations

$$\begin{aligned} A_c \Delta z \rho_i = \dot{M}_{i-1/2} - \dot{M}_{i+1/2} \\ \Delta z \frac{\mathrm{d}\dot{M}_{i+1/2}}{\mathrm{d}t} = \dot{I}_i - \dot{I}_{i+1} - A_c(p_{i+1} - p_i) \\ &- P \Delta z \bar{\tau}_{w,i+1/2}, \\ A_c \Delta z u_i = \dot{M}_{i-1/2}(h_{i-1/2} - \bar{h}_{\rho,i}) \\ &- \dot{M}_{i+1/2}(h_{i+1/2} - \bar{h}_{\rho,i}) + P \Delta z q_i'', \end{aligned}$$

Refrigerant-side finite volume discretization

Air-side finite volume discretization

Momentum Balance Approximations

Original form: 3n dynamic states

$$\Delta z \frac{d\dot{M}_{i+1/2}}{dt} = \dot{I}_i - \dot{I}_{i+1} - A_c (p_{i+1} - p_i) \frac{-i + 1/2}{dt} = \dot{I}_i - \dot{I}_{i+1} - A_c (p_i)$$

$$p_{A} = -P \Delta z \bar{\tau}_{w,i+1/2},$$

$$p_{i+1} = p_i - \frac{P}{A_c} \Delta z \bar{\tau}_{w,i+1/2}$$

Friction only: 2n dynamic states

Uniform dp/dt: 2n+1 dynamic states

$$\frac{dp_1}{dt} = \frac{dp_{n+1}}{dt} = \frac{dp_{ref}}{dt}$$

Linear Δp : n+3 dynamic states

$$\frac{\mathrm{d}p_{i}}{\mathrm{d}t} = (1 - \frac{i - 1}{n})\frac{\mathrm{d}p_{1}}{\mathrm{d}t} + \frac{i - 1}{n}\frac{\mathrm{d}p_{n+1}}{\mathrm{d}t}$$

$$n\Delta z \frac{\mathrm{d}\bar{M}}{\mathrm{d}t} = \dot{I}_{1} - \dot{I}_{n+1} - A_{c}(p_{n+1} - p_{1})^{2}\frac{z}{\mathrm{d}t} = I_{1} - I_{n+1} - A_{c}(p_{n+1} - p_{1})^{2}\frac{z}{\mathrm{d}t} - P\Delta z \sum_{i=1}^{n} \bar{\tau}_{w,i+1/2} - P\Delta z \sum_{i=1}^{n} \bar{\tau}_{w,i+1/2}$$

© MERL 2018/10/09

Closure Relations

- Can be implemented as model objects
- Typically defined over distinct flow regimes
 - Laminar / turbulent
 - Condensing / evaporating
- Hard to predict flow regime after DAE initialization
 - Discontinuities can result in chattering or crashing
- Smooth interpolation can help
 - But not necessarily with nonlinear algebraic loops

0

0

 $x_t - \frac{\Delta x}{2}$

 x_t

 $z(x) = T(x) \cdot f(x) + (1 - T(x)) \cdot g(x)$

 $x_t + \frac{\Delta x}{2}$

n n n

Heat Transfer Coefficients: Algebraic

- Multiple regimes can be blended together to form a universal function
- Simplified closure relations can approximate full correlations, e.g.,

$$\alpha = \alpha_0 \left(\frac{\dot{m}}{m_0}\right)^b$$

- Reduce size of nonlinear blocks
 - Improved robustness
 - Faster simulation
 - Invertible
- May be physically justified

Heat Transfer Coefficients: Dynamic

- α and Δp often do not change instantaneously
 - Unmodeled low-pass dynamics, e.g., refrigerant / oil behavior
- Explicitly adding additional dynamics can improve model behavior
 - Decouple nonlinear equation blocks, improves simulation speed
 - Easy in equation-oriented languages
- Trading one set of errors for another (more manageable) set of errors

Results

- Simplified algebraic vs. dynamic correlation in cycle
- Significantly reduced oscillations
 - Accurately captures lowfrequency behavior
- Improved system linearization

Computational Performance

- Dynamic models are much faster
 - Less nonlinear equation blocks
 - Less oscillations
- Enables use of correlations from literature in system models
- Dynamic models do not help as much when frictional dp relations can be inverted
- Sensitive to choice of time constant

HTC Formulation	CPU time (s)
Algebraic, correlation	-
Algebraic, simplified	228
Dynamic, correlation	146
Dynamic, simplified	39

dp Formulation	Algebraic CPU time (s)	Dynamic CPU time (s)
Standard	2855	-
Friction only	111	-
dp/dt	-	214
Linear pressure	-	175

Summary

- The formulation of closure relations can affect the behavior and numerical performance of a simulation model
- Simpler algebraic closure relations may be justified by physics-oriented reasoning for some applications
- Dynamic closure relations may also be justified
 - "Accurate" model produces non-physical behavior, "approximate" model produces more realistic behavior
- Choice of type of closure relations must be made in light of numerical and behavioral considerations
 - Potentially significant effects on simulation performance and speed

Thank you for your time!

Any questions?

Contact: Chris Laughman laughman@merl.com