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Model-Based System Design

Zero Energy Building Growth
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« Faster, cheaper development 2 2
» Systematically design multivariable i o
dynamics S 200

m
100
Are emergent dynamics from composed .
. . . 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
models consistent with experimental data? Gl

Fig 1. The Buildings List includes nearly 500 projects and is on a steep curve upward, having increased over 700% since 2012.
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The Challenge of Closure Relations
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Vapor Compression Cycle Model

Compressor

« System dynamics are dominated by
heat exchangers

» Refrigerant properties defined via Evaporating Condensing
technical equation of state HEX HEX
— Pressure and specific enthalpy
« Compressor and valve performance
curves defined by the user Expansion
Valve
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Heat Exchanger Models
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Momentum Balance Approximations

Original form: dMt1 1
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Closure Relations

« Can be implemented as model objects

» Typically defined over distinct flow
regimes
— Laminar / turbulent
— Condensing / evaporating

» Hard to predict flow regime after
DAE initialization

— Discontinuities can result in
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» Smooth interpolation can help

— But not necessarily with
nonlinear algebraic loops
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Heat Transfer Coefficients: Algebraic

Full blended HTC

» Multiple regimes can be blended
together to form a universal function

L o o
HTC (kW /m2g)

« Simplified closure relations can |
approximate full correlations, e.g., g o
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* Reduce size of nonlinear blocks Simplified condensing HTC
— Improved robustness o0
— Faster simulation 5000
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W/m’K)

23000

« May be physically justified 2000

1000 +

TC

0.0 02 0.4 0.6 08 1.0
static quality (kg/kg)

© MERL 2018/10/09 HTC: heat transfer coefficient 8



A El_a:‘l‘m for a greener tomorrow @

Changes for the Better

Heat Transfer Coefficients: Dynamic

» a and Ap often do not change instantaneously
— Unmodeled low-pass dynamics, e.g., refrigerant / oil behavior

» Explicitly adding additional dynamics can improve model behavior
— Decouple nonlinear equation blocks, improves simulation speed
— Easy in equation-oriented languages

« Trading one set of errors for another (more manageable) set of errors

alpha_2ph, alpha_lig, xdot_1, xdot_2);

-

alphaHats[k] = simpleHTC_FullRegion(xs[k], alpha_vap,
alpha_2ph, alpha_liq, xdot_1, xdot_2);
der(alphas[k]) = (alphaHats[k] — alphas[k])/tau;

[ alphas[k] = simpleHTC_FullRegion(xs[k], alpha_vap, }
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Results

« Simplified algebraic vs. dynamic
correlation in cycle

 Significantly reduced oscillations

— Accurately captures low-
frequency behavior

* Improved system linearization
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Computational Performance

Dynamic models are much faster HTC Formulation CPU time (s)

— Less nonlinear equation blocks Algebraic, correlation
— Less oscillations Algebraic, simplified 228
Dynamic, correlation 146

. I_Enables use of correlations from Dynamic, simplified 39
literature in system models
« Dynamic models do not help as

much when frictional dp relations

can be inverted

dp Formulation Algebraic Dynamic
« Sensitive to choice of time CPU time (s) | CPU time (s)

constant Standard 2855 -
Friction only 111 -
dp/dt - 214
Linear pressure - 175
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Summary

 The formulation of closure relations can affect the behavior and numerical
performance of a simulation model

» Simpler algebraic closure relations may be justified by physics-oriented
reasoning for some applications

« Dynamic closure relations may also be justified

— “Accurate” model produces non-physical behavior, “approximate” model
produces more realistic behavior

» Choice of type of closure relations must be made in light of numerical and
behavioral considerations

— Potentially significant effects on simulation performance and speed
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Thank you for your time!

Any guestions?

Contact: Chris Laughman
laughman@merl.com
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