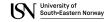


Analysing the stability of an islanded hydro-electric power system


The American Modelica Conference 2018

Dietmar Winkler

Kindly presented by Prof. Luigi Vanfretti, ALSETLab 9th October 2018

Introduction

- Project background
- Project objectives

Introduction

- Project background
- Project objectives

Modelling

- The OpenIPSL library
- Transmission system model
 - Three-generator model
 - Four-generator model

Introduction

- Project background
- Project objectives

Modelling

- The OpenIPSL library
- Transmission system model
 - Three-generator model
 - Four-generator model

Simulation

- Results of two different load scenario types
 - Active and reactive load changes
 - Active load changes only

Introduction

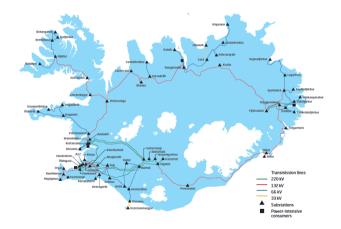
- Project background
- Project objectives

Modelling

- The OpenIPSL library
- Transmission system model
 - Three-generator model
 - Four-generator model

Simulation

- Results of two different load scenario types
 - Active and reactive load changes
 - Active load changes only

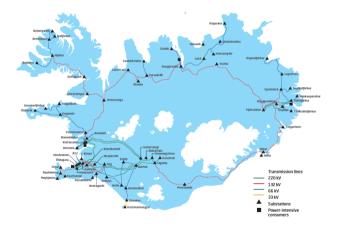

Conclusions

- Summary
- Modelling challenges

Introduction Project background

The Westfjords

- Low reliability of power supply in this area
- Consumption is larger than area's local production
- If connection to central grid is lost loads need to be reduced



Introduction

Project objectives

Goal

- Determine optimal disconnection sequence of loads
- Effect of additional production of Hvesta power station

Introduction

The transmission system

- 6 transmission lines
 - Operating at

 132kV
 66kV
 33kV
 11kV
- 3 load centres
 - Bíldudalur
 - Patreksfjörður
 - Tálknafjörður
- 4 generating units
 - Mjólká 1, 2 & 3
 - Hvesta

Introduction

The power stations

Mjólká

- Largest power station in the Westfjords
- Total capacity of $13.25\,\mathrm{MVA}$
- 3 Generating units
 - Mjólká 1 (Francis turbine, $3.4 \,\mathrm{MVA}$)
 - Mjólká 2 (Pelton turbine, $8.5 \,\mathrm{MVA}$)
 - Mjólká 3 (Francis turbine, $1.35\,\mathrm{MVA}$)

Hvesta

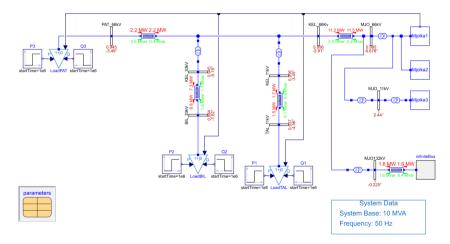
• Pelton turbine, $1.7 \,\mathrm{MVA}$

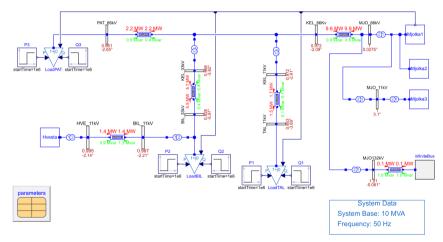
Figure: Power house of Mjólká 1 and Mjólká 2

Modelling

The Open Instance Power System Library

OpenIPSL


- open-source library for modelling of electrical power systems
- developed as an continuation of the iTesla project and is maintained by the ALSETLab research group
- components are based on and validated against models from the existing power system software such as "Power System Simulator for Engineering (PSS/E)" and "Power System Analysis Toolbox (PSAT)"

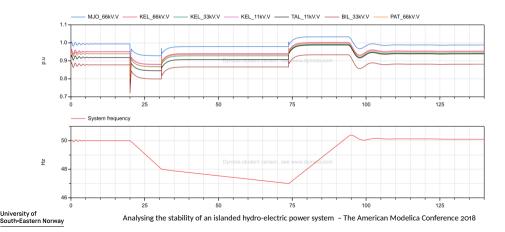

Modelling

Three-generator model

Modelling

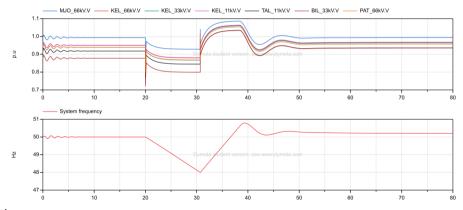
Four-generator model

Scenario 1: Active and reactive loads


- $\bullet\,$ Connection to the national grid is lost at $20\,\mathrm{s}\,$
- Loads are partially disconnected if the frequency drops below a specified limit
- Loads remain disconnected
- Quality requirements:
 - Frequency
 - Voltage

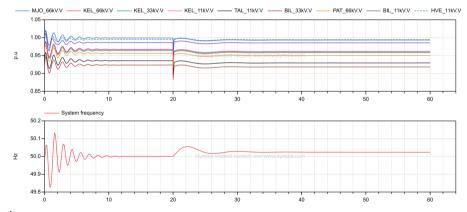
Initial loads

Load name	Active load	Reactive load
	[MW]	[Mvar]
LoadTAL	2.5	O.1
LoadBIL	6.85	1.5
LoadPAT	2.16	0.54
Total loads	11.51	2.14


Load Scenario 1.1: Disconnection of LoadPAT and LoadTAL

- 50% of LoadTAL and LoadPAT are disconnected
- System stabilises 85 s after the disconnection from the national grid

Load Scenario 1.2: Disconnection of LoadBIL


- 50% of LoadBIL is disconnected
- System stabilises 35 s after the disconnection from the national grid

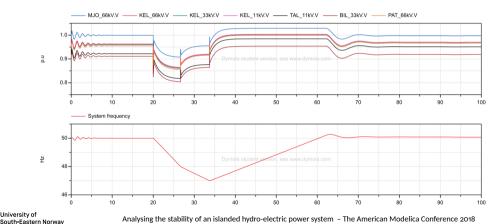
Analysing the stability of an islanded hydro-electric power system - The American Modelica Conference 2018

Load Scenario 1: Additional production, four-generator model

- The increased production of Hvesta stabilises the system
- System stabilises 8 s after the disconnection from the national grid

Analysing the stability of an islanded hydro-electric power system - The American Modelica Conference 2018

Scenario 2: Active loads


- $\bullet\,$ Connection to the national grid is lost at $20\,\mathrm{s}\,$
- Loads are partially disconnected if the frequency drops below a specified limit
- Loads remain disconnected
- Quality requirements:
 - Frequency
 - Voltage

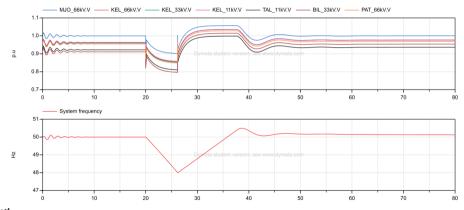
Initial loads

Load name	Active load [MW]
LoadTAL	3.3
LoadBIL	6.85
LoadPAT	2.16
Total loads	12.28


Load Scenario 2.1 (3G): Disconnection of LoadPAT and LoadTAL (Three-generator)

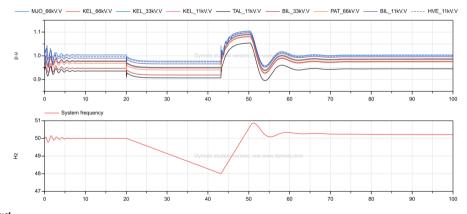
- 50% of LoadPAT and LoadTAL are disconnected
- System stabilises 55 s after the disconnection from the national grid

Load Scenario 2.1 (4G): Disconnection of LoadPAT and LoadTAL (Four-generator)


- 50% of LoadPAT is disconnected (LoadTAL stays connected)
- System stabilises 70 s after the disconnection from the national grid

Analysing the stability of an islanded hydro-electric power system – The American Modelica Conference 2018

Load Scenario 2.2 (3G): Disconnection of LoadBIL (Three-generator)


- 50% of LoadBIL is disconnected
- System stabilises 30 s after the disconnection from the national grid

Analysing the stability of an islanded hydro-electric power system - The American Modelica Conference 2018

Load Scenario 2.2 (4G): Disconnection of LoadBIL (Four-generator)

- 50% of LoadBIL is disconnected
- System stabilises 50 s after the disconnection from the national grid

Analysing the stability of an islanded hydro-electric power system - The American Modelica Conference 2018

Conclusions

LoadBIL

• Disconnection of LoadBIL gives fastest stabilisation for both scenarios

Additional production from Hvesta

- Grid is not overloaded in scenario 1
- Gives better voltage stability at all buses
- System stabilises slower

Conclusions

LoadBIL

• Disconnection of LoadBIL gives fastest stabilisation for both scenarios

Additional production from Hvesta

- Grid is not overloaded in scenario 1
- Gives better voltage stability at all buses
- System stabilises slower

Modelling Challenges

- For numerical reasons parameters had to be adjusted away from original PSS/E values
- Reduced load values → simulated voltage levels lower than in reality
- Sub-optimal turbine governor parameters lead to frequency offset

Thank you! Acknowledgement and Contact

Acknowledgement

This paper is based on the work executed by Kim Aars as part of his Master's Thesis in 2017 with the title: "Simulation of load and fault scenarios in a hydro power system with island grid" in cooperation with Verkís Consulting Engineers, Iceland

Contact

dietmar.winkler@usn.no

