Exergy Analysis of Thermo-Fluid Energy Conversion Systems in Model-Based Design Environment

Knowledge for Tomorrow

Daniel Bender German Aerospace Center (DLR) Institute of System Dynamics and Control

The American Modelica Conference 2018 Boston, October 09th/10th, 2018

"Exergy of a thermodynamic system is the maximum theoretical useful work (shaft work or electrical work) obtainable as the system is brought into complete thermodynamic equilibrium with the thermodynamic environment while the system interacts with this environment only."

Motivation

(Tsatsaronis, 2007)

Application

Methodology

D. Bender

Modelica USA 2018

Motivation – Example Energy Conversion System

3

Motivation – Example Energy Conversion System

Introduction to Exergy Analysis **Physical and Chemical Exergy**

Exergy flow of fluid stream Splitting of specific exergy

Thermal

е⊤

$$\dot{E}_{t,i} = \dot{m}_i \cdot [h_i - h_0 - T_0 \cdot (s_i - s_0)]$$

$$e_{t,i} = e_i^T + e_i^M + e_i^{Ch}$$

Assumptions:

- Moist air treated as ideal gas
- Chemical exergy with approach of Szargut (Szargut, 1988)

Introduction to Exergy Analysis -Exergy Balances

Exergy balance on **component** level

Introduction to Exergy Analysis -Exergy Balances

7

Exergy Analysis – Fuel and Product Balances

Component	Definition Cases
Heat Exchanger	6
Compressor	3
Turbine	3
Water Separator	1
Water Injector	3
TCV / Flow Resistance	1
Mixer	1

Motivation

D. Bender

Modelica USA 2018

Methodology Application

Integration into Model-Based Design Environment – Requirements

Exergy-Based Methods

- Retrieve thermodynamic state of all energy streams entering and exiting a component
- Identify the aim the component's energy conversion
- Select the appropriate exergy balance of fuel and product exergy rates depending of the operation condition and reference environment
- Allow a user defined exergy analysis on system level using the component's based analysis
- Centralized propagation of reference environment on system level among all components
- Media models must provide appropriate functions to calculate further thermodynamic data

Model-Based Environment

- Generic approach for easy integration into any thermo-fluid library
- Compliant with Modelica Standard Library (Usage of MSL Media models and connectors)

Motivation

Methodology

9

Application

• Minor impact on numerical computation

D. Bender

Modelica USA 2018

Motivation

// Reference environment
//

SIunits.Temperature T_ref =
 worldEx.T_ref
"Reference Temperature for Exergyflow";
SIunits.Pressure p_ref = worldEx.p_ref
"Reference Pressure for Exergyflow";
SIunits.MassFraction X_ref[:] =
 worldEx.X_ref;
outer ExergyLibrary.World worldEx;

```
Sensors.Air.ExergySensor_twoPort_turboCmp
    exergySensor_twoPort(
airMediumA(state=AirMedium.setState_phX(
           portA.p,
           portA.h,
           portA.Xi),
           redeclare package AirMedium
   = AirMedium),
airMediumB(state=AirMedium.setState_phX(
           portB.p,
           portB.h,
           portB.Xi),
           redeclare package AirMedium
   = AirMedium),
m flow=m flow,
power=power,
T ref = T ref,
p_ref = p_ref,
X ref = X ref;
```

D. Bender

Modelica USA 2018

DLR

Turbo Compressor

Methodology

Application

11


```
// Calculation of fuel and product Exergy
if m flow <= 0 then
E fuel = 0;
E_prod = 0;
case T = 0;
else
if airMediumA.T > state_ref.T then
case T = 1;
E_fuel = abs(power) + E_chem_in - E_chem_out;
E_prod = E_therm_out - E_therm_in + E_mech_out - E_mech_in;
elseif airMediumB.T >= state_ref.T and airMediumA.T <= state_ref.T then</pre>
case_T = 2;
E \text{ fuel} = abs(power) + E \text{ therm in} + E \text{ chem in} - E \text{ chem out};
E_prod = E_therm_out + (E_mech_out - E_mech_in);
elseif airMediumB.T < state_ref.T then</pre>
case T = 3;
E_fuel = abs(power) + (E_therm_in - E_therm_out) + E_chem_in - E_chem_out;
E \text{ prod} = E \text{ mech out} - E \text{ mech in};
else
case T = 100;
E fuel = 0;
E \text{ prod} = 0;
end if;
end if:
E_D = E_fuel - E_prod;
exergy_eff = E_prod / max(eps,E_fuel);
```

Motivation

D. Bender

Modelica USA 2018

DIR

 $\dot{E}_{F,k} = \dot{E}_{P,k} + \dot{E}_{D,k}$

13

Methodology Application

Integration into Model-Based Design Environment – System Level

Integration into Model-Based Design Environment – System Level

Integration into Model-Based Design Environment – Identifier

Motivation

UID.UniqueID uniqueID(group="exergy") a; parameter String instanceName = getInstanceName(); equation worldEx.E_D[uniqueID.uid+1] = E_D; worldEx.instanceName[uniqueID.uid+1] = instanceName;

DIR

D. Bender

Modelica USA 2018

UID.GroupTotal groupTotal(group="
 exergy") a;
Modelica.SIunits.Power E_D[groupTotal.
 total];
Modelica.SIunits.Power E_D_total = sum
 (E_D) + E_D_user;
String instanceName[groupTotal.total];

Methodology

Application

16

Application Example – Aircraft Environmental Control

Application Example – Aircraft ECS Definition of System Balances

Application Example – Aircraft ECS Results

D. Bender

DLR

Application

19

Modelica USA 2018 Motivation Methodology

Application Example – Aircraft ECS Results

ExCo	omponentNa	ames_eVCP	referenc	eArchitecture_V	C_TAXI_RA	AC.txt - Edito	or
Datei	Bearbeiten	F <u>o</u> rmat	Ansicht	2			
Total Struc [1]MH [2]Ev [3]Re [4]wa	Number ture of X aporator heater terSepar	of compovectors	onents based	containing on E_D:	exergy	sensors	= 30
[5]wa [6]fa [7]Ba [8]AC [9]PH	terInjec nRamAir seCompre M_turbin X	ssor e					
[10]A [11]C [12]V [13]V	CM_compr ondenser aCsTurbo aCsValve	essor Compres:	sor				
[14] [15]j [16] f [17]f [18]j	unction1 lowModel lowModel unction1	3 AirARam AirARam	Air4 Air1				
[19]V [20]O [21]P [22]W	enturi_A zone_Con ack_Vent aterExtr ltitudeV	CM_Compi verter uri actorAii alveDuci	ressor	esistance wResistanc	e		
[24]D [25]d [26]j [27]B	iffuser ivPlenum unction4 ase_Comp	resor_c	heck_Va	alve1			
[29]j [30]B Full eVCP	unction6 ase_Comp paths to referenc	resor_Cl exergy eArchit	heck_va sensor	alve 's: _VaC_TAXI_R	AC.MHX.	exergySe	nsor
eVCP_ eVCP_ eVCP_ eVCP_ eVCP_	referenc referenc referenc referenc referenc	eArchit eArchit eArchit eArchit eArchit	ecture ecture ecture ecture ecture	VaC_TAXI_R VaC_TAXI_R VaC_TAXI_R VaC_TAXI_R VaC_TAXI_R	AC.Evapo AC.Rehea AC.water AC.water AC.fanR	orator.exe ater.exe Separato Injecto amair.exe	rgySe or.ex ergySe

Motivation

Application

20

Methodology

D. Bender

Modelica USA 2018

Conclusion

- Development of an Exergy Library in Modelica
- Integration of exergy-based methods into model-based environment:

Motivation

Methodology

- Exergy balances available for standard components of an aircraft ECS
- Reference environment centralized propagated
- User defined exergy balances on system level
- Library can be integrated into any thermo-fluid library
- Compliant with MSL
- Only minor impacr on numerical computation

D. Bender

Modelica USA 2018

Application

Remarks

- Standardized formulation and naming of equations for the thermodynamic properties should be ensured within media models
- Integration of "identifier" into MSL for automated collection of variables and data on system level

Motivation

Methodology

D. Bender

Modelica USA 2018

Application

Thank you for your attention!

Daniel Bender German Aerospace Center (DLR) Institute of System Dynamics and Control

The American Modelica Conference 2018 Boston, October 09th/10th, 2018

Knowledge for Tomorrow

Copyright notice

© Deutsches Zentrum für Luft- und Raumfahrt e.V. All rights reserved. No part of this publication may be reproduced, transmitted, or disseminated in any form or by any means without prior written permission from Deutsches Zentrum für Luft- und Raumfahrt e.V.

Knowledge for Tomorrow

