Exergy Analysis of Thermo-Fluid Energy Conversion Systems in Model-Based Design Environment

Daniel Bender
German Aerospace Center (DLR)
Institute of System Dynamics and Control

The American Modelica Conference 2018
Boston, October 09th/10th, 2018
Definition of Exergy

„Exergy of a thermodynamic system is the maximum theoretical useful work (shaft work or electrical work) obtainable as the system is brought into complete thermodynamic equilibrium with the thermodynamic environment while the system interacts with this environment only.“

(Tsatsaronis, 2007)
Motivation – Example Energy Conversion System
Motivation – Example Energy Conversion System

Exergetic Analysis

- E Fuel: 40.6%
- E D: 52.1%
- E prod: 40.6%
- E loss: 7.3%

Heat Exchanger:
- 72.0% (37.6%)

Turbine:
- 27.9% (14.5%)

Pipes:
- < 0.1%
Introduction to Exergy Analysis
Physical and Chemical Exergy

Exergy flow of fluid stream

Splitting of specific exergy

\[\dot{E}_{t,i} = \dot{m}_i \cdot [h_i - h_0 - T_0 \cdot (s_i - s_0)] \]

\[e_{t,i} = e_i^T + e_i^M + e_i^{Ch} \]

Assumptions:
- Moist air treated as ideal gas
- Chemical exergy with approach of Szargut (Szargut, 1988)
Introduction to Exergy Analysis - Exergy Balances

Exergy balance on component level

\[\dot{E}_F,k = \dot{E}_P,k + \dot{E}_D,k \]

Exergy balance on system level

\[\dot{E}_{F,tot} = \dot{E}_{P,tot} + \sum \dot{E}_{D,k} + \dot{E}_{L,tot} \]
Introduction to Exergy Analysis - Exergy Balances

Component schematic

Motivation

Methodology

Application
Exergy Analysis – Fuel and Product Balances

<table>
<thead>
<tr>
<th>Component</th>
<th>Definition Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Exchanger</td>
<td>6</td>
</tr>
<tr>
<td>Compressor</td>
<td>3</td>
</tr>
<tr>
<td>Turbine</td>
<td>3</td>
</tr>
<tr>
<td>Water Separator</td>
<td>1</td>
</tr>
<tr>
<td>Water Injector</td>
<td>3</td>
</tr>
<tr>
<td>TCV / Flow Resistance</td>
<td>1</td>
</tr>
<tr>
<td>Mixer</td>
<td>1</td>
</tr>
</tbody>
</table>
Exergy-Based Methods

• Retrieve thermodynamic state of all energy streams entering and exiting a component
• Identify the aim the component’s energy conversion
• Select the appropriate exergy balance of fuel and product exergy rates depending of the operation condition and reference environment
• Allow a user defined exergy analysis on system level using the component’s based analysis
• Centralized propagation of reference environment on system level among all components
• Media models must provide appropriate functions to calculate further thermodynamic data

Model-Based Environment

• Generic approach for easy integration into any thermo-fluid library
• Compliant with Modelica Standard Library (Usage of MSL Media models and connectors)
• Minor impact on numerical computation
Integration into Model-Based Design Environment – Component Level

Turbo Compressor

2 Port Exergy

airInlet

airOutlet

flange_a

D. Bender
Modelica USA 2018
Integration into Model-Based Design Environment – Component Level

```modelica
// Reference environment
// ------------------
SIunits.Temperature T_ref = worldEx.T_ref
"Reference Temperature for Exergyflow";
SIunits.Pressure p_ref = worldEx.p_ref
"Reference Pressure for Exergyflow";
SIunits.MassFraction X_ref[:] = worldEx.X_ref;
outer ExergyLibrary.World worldEx;

//***********Sensors***********
Sensors.Air.ExergySensor_twoPort_turboCmp
  exergySensor_twoPort(
  airMediumA(state=AirMedium.setState_phX(
    portA.p,
    portA.h,
    portA.Xi),
    redeclare package AirMedium
    = AirMedium),
  airMediumB(state=AirMedium.setState_phX(
    portB.p,
    portB.h,
    portB.Xi),
    redeclare package AirMedium
    = AirMedium),
  m_flow=m_flow,
  power=power,
  T_ref = T_ref,
  p_ref = p_ref,
  X_ref = X_ref);
```

Turbo Compressor
Integration into Model-Based Design Environment – Component Level

// Exergy implementation
// ---------------------
(e_t_in, e_therm_in, e_mech_in, e_chem_in) = Functions.exergyFlow_MoistAir
 (e_t_out, e_therm_out, e_mech_out, e_chem_out) = Functions.exergyFlow_MoistAir

E_t_in = e_t_in * airMediumA.X[2] * m_flow;
E_t_out = e_t_out * airMediumB.X[2] * m_flow;

E_therm_in = e_therm_in * airMediumA.X[2] * m_flow;
E_therm_out = e_therm_out * airMediumB.X[2] * m_flow;

E_mech_in = e_mech_in * airMediumA.X[2] * m_flow;
E_mech_out = e_mech_out * airMediumB.X[2] * m_flow;

E_chem_in = e_chem_in * airMediumA.X[2] * m_flow;
E_chem_out = e_chem_out * airMediumB.X[2] * m_flow;
Integration into Model-Based Design Environment – Component Level

// Calculation of fuel and product Exergy
if m_flow <= 0 then
E_fuel = 0;
E_prod = 0;
case_T = 0;
else
if airMediumA.T > state_ref.T then
case_T = 1;
E_fuel = abs(power) + E_chem_in - E_chem_out;
E_prod = E_therm_out - E_therm_in + E_mech_out - E_mech_in;
elseif airMediumB.T >= state_ref.T and airMediumA.T <= state_ref.T then
case_T = 2;
E_fuel = abs(power) + E_therm_in + E_chem_in - E_chem_out;
E_prod = E_therm_out + (E_mech_out - E_mech_in);
elseif airMediumB.T < state_ref.T then
case_T = 3;
E_fuel = abs(power) + (E_therm_in - E_therm_out) + E_chem_in - E_chem_out;
E_prod = E_mech_out - E_mech_in;
else
case_T = 100;
E_fuel = 0;
E_prod = 0;
end if;
end if;
E_D = E_fuel - E_prod;
exergy_eff = E_prod / max(eps,E_fuel);
\[\dot{E}_{F,k} = \dot{E}_{P,k} + \dot{E}_{D,k} \]
Integration into Model-Based Design Environment – System Level
Integration into Model-Based Design Environment – System Level
Integration into Model-Based Design Environment – Identifier

```
UID.UniqueID uniqueID(group="exergy") a;
parameter String instanceName = getInstanceName();
equation
    worldEx.E_D[uniqueID.uid+1] = E_D;
    worldEx.instanceName[uniqueID.uid+1] = instanceName;

UID.GroupTotal groupTotal(group="exergy") a;
Modelica.SIUnits.Power E_D[groupTotal.total];
Modelica.SIUnits.Power E_D_total = sum (E_D) + E_D_user;
String instanceName[groupTotal.total];
```
Application Example – Aircraft Environmental Control System
Application Example – Aircraft ECS
Definition of System Balances

\[\dot{E}_{F,\text{tot}} = \dot{E}_{P,\text{tot}} + \sum \dot{E}_{D,k} + \dot{E}_{L,\text{tot}} \]
Application Example – Aircraft ECS

Results

- worldEx.E_D_total
- worldEx.E_fuel_total
- worldEx.E_prod_total
- worldEx.E_loss_total
Application Example – Aircraft ECS

Results

Total Number of components containing exergy sensors = 30
Structure of vectors based on E_D:

1. MHX
2. Evaporator
3. Reheater
4. WaterSeparator
5. WaterInjector
6. FanRamAir
7. BaseCompressor
8. ACM_compressor
9. PHX
10. ACM_compressor
11. Condenser
12. VaCS_TurboCompressor
13. VaCSValve
14. Junction2
15. Junction13
16. FlowModelAirARamAir4
17. FlowModelAirARamAir1
18. Junction1
19. Venturi_ACM_Compressor
20. Ozone_converter
21. Pack_Venturi
22. WaterExtractorAirFlowResistance
23. AltitudeValveDuctAirFlowResistance
24. Diffuser
25. divPlenum
26. Junction4
27. Base_Compressor_check_valve1
28. Junction3
29. Junction6
30. Base_Compressor_check_valve
Full paths to exergy sensors:
eVCP_referenceArchitecture_VaC_TAXI_RAC.MHX.exergySensor
eVCP_referenceArchitecture_VaC_TAXI_RAC.Evaporator.exergySensor
eVCP_referenceArchitecture_VaC_TAXI_RAC.Reheater.exergySensor
eVCP_referenceArchitecture_VaC_TAXI_RAC.WaterSeparator.exergySensor
eVCP_referenceArchitecture_VaC_TAXI_RAC.WaterInjector.exergySensor
eVCP_referenceArchitecture_VaC_TAXI_RAC.FanRamAir.exergySensor
Conclusion

- Development of an Exergy Library in Modelica
- Integration of exergy-based methods into model-based environment:
 - Exergy balances available for standard components of an aircraft ECS
 - Reference environment centralized propagated
 - User defined exergy balances on system level
- Library can be integrated into any thermo-fluid library
- Compliant with MSL
- Only minor impact on numerical computation
Remarks

• Standardized formulation and naming of equations for the thermodynamic properties should be ensured within media models

• Integration of „identifier“ into MSL for automated collection of variables and data on system level
Thank you for your attention!

Daniel Bender
German Aerospace Center (DLR)
Institute of System Dynamics and Control

The American Modelica Conference 2018
Boston, October 09th/10th, 2018
Copyright notice

© Deutsches Zentrum für Luft- und Raumfahrt e.V. All rights reserved. No part of this publication may be reproduced, transmitted, or disseminated in any form or by any means without prior written permission from Deutsches Zentrum für Luft- und Raumfahrt e.V.