

Molten Salt–Fueled Nuclear Reactor Model for Licensing and Safeguards Investigations

M. Scott Greenwood, PhD

Oak Ridge National Laboratory Advanced Reactor Engineering (ARE) Group

October 8-10, 2018 The American Modelica Conference 2018

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Molten Salt Reactors – An Introduction

- An advanced nuclear reactor concept
- Two principle groups:
 - Salt-cooled reactors:
 - A solid fuel undergoes fission and is cooled by a separate non-fueled primary system salt
 - Salt-fueled reactors:
 - A flowing fueled salt contains fissile material that fissions when in the core and flows throughout the primary system, serving as fuel and coolant
- This work focuses on salt-fueled MSRs

High-level categorization of MSRs

Licensing and Safeguards for Salt-Fueled Systems

- Licensing
 - Ensure protection and safety of public health and environment
 - Primary importance are source terms and their release pathways
- Safeguards
 - The timely detection/deterrence of diversion of nuclear material from peaceful nuclear activities
- Common Needs
- 1. Precursor drift models that account for delayed neutron production throughout the primary loop and their reintroduction into the core
- 2. Radionuclide inventory accounting, including source term production, holdup, and release mechanism models
- 3. Thermal hydraulic analyses of sufficient fidelity to capture flow and power dynamics in salt-fueled concepts
- 4. Time-, temperature-, flux-, and flow-dependent materials, and salt interaction data, and models to predict corrosion, erosion, and irradiation effects
- Existing tools do not exist which can investigate the system-level dynamics of fluid-fueled MSRs

Source

WARE NATIONAL PROVIDENCE OF CONTROL OF CONT

General MSR Modeling and Simulation (M&S) Needs

- Recent report outlined high priority M&S needs for MSRs
 - 1. Source term definition, material accountancy, and radiological consequences
 - 2. Safety analysis (AOO and DBA) (i.e., transient behavior)
 - 3. Analysis and design of steady state neutronics and thermal hydraulics
- To meet those needs, this work developed methods for modeling MSRs
 - Example: Modified point kinetics, thermalhydraulic models

Terminology of high-level systems for salt-fueled MSRs

Source

AK RIDGE Rader, Jordan D., Michael Scott Greenwood, and Paul W. Humrickhouse. 2018. "Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion." *Nuclear Technology*, March, 1–8. <u>https://doi.org/10.1080/00295450.2018.1431505</u>.

ORNL Modelica Library – TRANSFORM: <u>TRAN</u>sient <u>Simulation Framework Of Reconfigurable M</u>odels

• TRANSFORM – An ORNL developed Modelica "library"

- Focus on modeling system-level behavior of advanced reactors
- Built-in flexibility to handle custom applications
- Thermal hydraulics, reactor kinetics, control systems, etc.
- <u>https://github.com/ORNL-Modelica/TRANSFORM-Library</u>
- ModelicaPy
 - Repository of python files to interact with Modelica
 - <u>https://github.com/ORNL-Modelica/ModelicaPy</u>

Trace Substance Approach Used to Track Source Terms

- Trace Substances:
 - Are carried along with the main fluid flow
 - Each substance has its own mass balance
 - Amount of any substance is tracked

- Are able to be generated, decay, separated, diffuse through solids, etc. as appropriate
- Properties that govern physical behavior can be incorporated from existing databases/nuclear codes (e.g., ORIGEN)
- Examples:
 - Neutron precursors, tritium, and other fission products

TRANSFORM Applications: Modified Kinetic Models

- Modified point kinetic model captures dynamics for fluid-fueled MSRs
 - Neutron precursor drift
 - Fission products (including poisoning)
 - User definable reactivity feedback

Simple closed-loop fluid model in TRANSFORM

CREAK RIDGE Source

OAK RIDGE National Laboratory Greenwood, Michael Scott, and Benjamin R. Betzler. In Press. "Modified Point Kinetic Model for Neutron Precursors and Fission Product Behavior for Fluid-Fueled Molten Salt Reactors." Nuclear Science and Engineering. https://doi.org/10.1080/00295639.2018.1531619.

TRANSFORM Applications: Tritium Diffuser

- Demonstrates complex transport
- Tritium diffuses through the wall according to the physical settings
- Matches analytical solution

CAK RIDGE

DAK RIDGE National Laboratory Rader, Jordan D., Michael Scott Greenwood, and Paul W. Humrickhouse. 2018. "Verification of Modelica-Based Models with Analytical Solutions for Tritium Diffusion." *Nuclear Technology*, March, 1–8. <u>https://doi.org/10.1080/00295450.2018.1431505</u>.

Molten Salt Demonstration Reactor (MSDR)

- Relatively generic concept
- 750 MWt, salt-fueled
- Thermal reactor
 - Graphite moderated
- Key features include:
 - Drift kinetics behavior
 - Fission product behavior
 - Graphite mass and surface area
 - Off-gas system
 - Drain tank
 - Decay heat removal system

Dynamic model of the fluoride salt-fueled, thermal MSDR

Steady-state behavior of various trace substances

Example 1: Sequential Pump Trips

• Event

- Sequential trip of the Primary fuel loop (PFL) and the primary coolant loop (PCL) pumps (PCL)
- Flows reduce to 95% of full flow rate over 60 seconds
- Sequence Description (plots on next slide)
 - 1. Upon PFL pump trip, the temperature within the core of the reactor heats up due to the decreased flow rate
 - 2. As the temperature increases, the temperature feedback of the reactor drives the power down as it attempts to correct the discrepancy between the reference and measured nodal temperatures
 - 3. The oscillations in temperature, and therefore reactivity and power, is associated with the influx of colder-than-nominal fluid returning from the PFL HX.
 - This fluid is cooled more than usual due to the continued operation of the PCL pump.
 - 4. A new steady state is eventually achieved

Example 1: Sequential Pump Trips cont'd

Example 2: Pump Coast Down and Reactivity Feedback

Scenario Parameters

 ρ_{CR} [pcm]

 \cap

0

-300

-3000

λ [s⁻¹]

1/40

1/20

1/40 1/40

Scenario

С

D

• Start at steady-state, full-power

12

- Scenarios investigate pump coast down (λ) and control rod (ρ_{CR}) worth impact
- Control rod inserted over 150 seconds
- Demonstrates ability to investigate various transients and impact on system

Takeaway: This Work is a Base Line to Understanding MSRs

- Reactor physics and thermal-hydraulics have been successfully integrated with <u>fission product behavior</u>
- Will be used to investigate various scenarios important to licensing and safeguards (i.e., safety and source term)
 - These scenarios and figures of merit(s) (i.e., fission products of importance) will be identified in the future
 - Model will help explore instrumentation and control
 - Instrument placement, uncertainty, drift, time lag, etc.
 - These studies coupled with reactor behavior in a truly dynamic model have never been performed and are critical to deploying MSRs
- Will be updated as necessary with additional capabilities
 - Corrosion, fuel burn-up, coupled with nuclear codes (e.g., ORIGEN), etc.

TRANSFORM Additional Applications

TRANSFORM Applications: SCO₂ Loop Model

- TRANSFORM is able to use complex media properties
 - E.g., CO₂ models from CoolProp and KCIMgCl₂ salt media from TRANSFORM

15

TRANSFORM Applications: UCB CIET Facility

- Uses Dowtherm A oil as a simulant fluid for fluoride salts
- Compared favorable with traditional nuclear codes (i.e., RELAP5-3D) and experimental data

TRANSFORM Heater inlet TRANSFORM Heater Out TRANSFORM C1 8000

-TRANSFORM (RELAP Heater

RELAP CTAH i

7000

CTAH Inlet Temperature (RELAP5-3D) CTAH Outlet Temperature (Experiment)

CTAH Outlet Temperature (RELAP5-3D) Heater Inlet Temperature (Experiment)

Heater Inlet Temperature (RELAP5-3D)

5500 Time [s]

Fluid Temperature vs. Time

5000

Time (sec) Power vs. Time

6000

340

330

320

8000

€ 6000

1000

2000 3000

4000

Summary

- MSRs, especially salt-fueled, require new modeling and simulation capabilities
- Meeting the needs of licensing and safeguards is of primary importance
- Source term tracking and transient reactor behavior are critical
- Modified kinetic model and thermal hydraulic models have been added to TRANSFORM which can track the birth, transport, and decay of source terms
- These models will continue to be developed and integrated with other nuclear tools to facilitate the deployment of advanced nuclear reactors
- TRANSFORM is valuable for investigating a range of problems
 - <u>https://github.com/ORNL-Modelica/TRANSFORM-Library</u>

Thank you.

Scott Greenwood greenwoodms@ornl.gov

