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Abstract 
When developing Remotely Operated Vehicles (ROVs), 
models prove extremely useful in determining design 
parameters and control strategies. This paper’s goal is to 
develop a modeling framework for underwater ROVs in 
Modelica, with integration with the Robotic Operating 
System (ROS), allowing for quicker prototyping and 
testing of ROV design and control. 

Named the Underwater Rigid Body Library (URBL), 
the modeling framework treats the effect of water on 
submerged bodies as interactions with a “field” of water 
to capture the effects of buoyancy and drag. Its usage is 
demonstrated by applying it to the BlueROV2, a 
commercially available ROV from Blue Robotics. 
Using controller signals to the propellers as system 
inputs, the model was tested with various motor 
command profiles to achieve different composite 
motions. Constant motor commands were provided both 
from within Modelica and from ROS; the simulation 
results indicated that the model responded 
appropriately. 
Keywords:     Underwater, ROV, Modelica, ROS, 
Framework 

1 Introduction 
1.1 Relevant Background 
Remotely Operated Vehicles (ROVs) are vital for the 
exploration and development of areas that are beyond 
the reach of humans, particularly in the underwater field. 
When developing any ROV design, it is helpful to 
construct a model of the design to provide an idea of its 
performance. There exist many models of underwater 
vehicle designs like in (Prestero, 2001), but these 
models focus specifically upon one vehicle design. 
There are very few initiatives geared towards modeling 
a variety of underwater bodies and vehicles (McMillian 
et al, 1995; Tran et al, 2018), but even these are purpose-
built software programs. The aim of this paper is to 
develop a general-purpose modeling framework in 
Modelica that can be used to model an ROV design 
using prebuilt components and has flexibility to grow as 
a library.  

The paper will focus on modeling the ROV based off 
rigid-body principles, as is done in (Tang, 1999; Wang, 

W. et al, 2006). This is as opposed to modeling based 
on CFD principles, like in (Yang et al, 2016; Wang, C., 
et al, 2014), as it would be intractable for quick 
prototyping and control testing. Representing 
hydrodynamic forces, such as viscous drag and added 
mass, can be done at varying levels of complexity, as 
seen in (Yuh, 1990), and (da Silva et al, 2007). As this 
paper’s focus is on developing a modeling framework, 
it will only address the most basic of hydrodynamics, 
while also providing a template for further expansion by 
the user.  

1.2 Objectives 
The goal for the work described in this paper is to 
develop a basic framework for mathematically 
modeling underwater vehicles that can: 
• Aid the prototyping and testing of vehicle design 

and controls. 
• Be readily integrated with common control and 

feedback mechanisms, specifically ROS. 
• Visualize prototype design and test results via three-

dimensional animation.  
In Section 2, the modeling framework URBL is 

discussed in detail. In Section 3, a demonstration of the 
modeling framework is done via a use case of modeling 
a physical ROV. Section 4 follows with verification 
tests of the model developed from the framework, and 
the ROS interface capability of the model. Section 5 
provides the final remarks and closes the paper. 

2 Underwater Rigid Body Library. 
2.1 Overview 
The modeling framework is developed as the 
Underwater Rigid Body Library (URBL) – the library 
contains the base functional components to any ROV 
design. The URBL consists of two major sections – 
components and interfaces for modeling underwater 
vehicles, and an external interface to ROS. The URBL 
components are models to describe rigid body 
interactions with water; the interface is for a basic 
propeller. 
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2.2 Rigid Body and Field Model 
As modeling within Modelica is component-based, it is 
imperative to develop a rigid body component that can 
interact with the surrounding submerging fluid 
environment. To accomplish this, the framework 
represents the environment via a field. The fluid is 
assumed to be an incompressible Newtonian fluid. The 
field is considered to have two primary interactions with 
the rigid body – one via the buoyancy and the other via 
fluid drag forces exerted by the fluid on the rigid body. 
This is written into the model as shown below, with 
𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 being the density of the rigid body, 𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏 the 
density of the submergent fluid, 𝜈𝜈𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑏𝑏𝑣𝑣𝑓𝑓𝑣𝑣𝑏𝑏 being the 
coefficient of viscosity, and 𝐴𝐴 being the cross-sectional 
area of the body.  

 𝑓𝑓𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣 ∶= −
𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∙ 𝑚𝑚 ∙ �⃗�𝑔 (1) 

 
 𝑓𝑓𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 ∶= −𝜈𝜈𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑏𝑏𝑣𝑣𝑓𝑓𝑣𝑣𝑏𝑏 ∙ 𝐴𝐴 ∙ �⃗�𝑣 

 

(2) 

Here, �⃗�𝑣 represents the velocity of the body, �⃗�𝑔 the 
gravitational acceleration, and 𝑚𝑚 the mass. To account 
for drag torques purely due to angular speed �⃗⃗⃗�𝜔, the 
following equation is added to the drag computation: 

 𝜏𝜏𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 = −𝑘𝑘𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 ∙ �⃗⃗⃗�𝜔 (3) 
where 𝑘𝑘𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 represents the coefficient of drag 

rotationally (Wadoo, Kachroo, 2016). 
The field model dictates the values of the forces 

affecting bodies within. The field’s force is applied 
equally across all elements in the field. However, when 
dealing with a rigid body, where the only interface 
available is the Frame of Interest (F.O.I), it is not 
possible to implement the field in such a manner. 
Instead, the total force the field applies on the body at 
the center of mass (CM) is translated to the F.O.I, as 
seen in Figure 1. 

 
Figure 1 – Translation of buoyant and drag forces 
from center of mass to frame of interest 

The rigid body model itself is extended from the 
standard MultiBody Library (Otter, 2003). The field 
model is added to the rigid body model, using the inner 
and outer qualifiers in Modelica, so that any component 
constructed from this rigid body model will interact with 

the fluid surrounding the component, regardless of 
design. The Modelica-specific implementation is shown 
in Appendix B. 

2.3 Propeller Model 
The schematic in Figure 2 captures the torque and 

thrust generation in the propeller – the electric motor is 
captured through the EMF, and the propeller frame 
captures the momentum exchange between the blades 
and the water. 

 
Figure 2 - Schematic of propeller structure 

The propeller’s rotor is powered by a motor, which in 
turn is powered by some external source of power. From 
(Triantafyllou, 2004), the thrust can be written as 
proportional to the square of the rotor’s angular velocity 
𝜔𝜔. 

 𝐹𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 ∝ 𝜔𝜔2, 𝐾𝐾𝑇𝑇(𝐽𝐽∗) (4) 
𝐾𝐾𝑇𝑇(𝐽𝐽∗) is the thrust coefficient, where 𝐽𝐽∗ is the ratio 

between rotor speed (intake speed) and fluid speed 
(outtake speed). Specifically, 𝐾𝐾𝑇𝑇(𝐽𝐽∗) can be 
approximated (Triantafyllou, 2004) as follows: 

 𝐾𝐾𝑇𝑇(𝐽𝐽∗) = 𝛽𝛽1 − 𝛽𝛽2𝐽𝐽∗ (5) 
 𝐽𝐽∗ = 𝑣𝑣

𝜔𝜔 (6) 

Here,  𝛽𝛽1 and 𝛽𝛽2 are functions of the intake and 
outtake speeds of the water.  

Taking 𝑣𝑣 and 𝜔𝜔 as the linear and angular velocities of 
the propeller along its axis, Equation 4 can be rewritten 
as follows: 

 𝐹𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 ∝ 𝜔𝜔2 (𝛽𝛽1 − 𝛽𝛽2
𝑣𝑣
𝜔𝜔) (7) 

Letting 𝑘𝑘𝑑𝑑, 𝑘𝑘𝑚𝑚 be appropriate constants of 
proportionality, it can be rewritten as 

 �⃗�𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 = 𝑘𝑘𝑚𝑚|𝜔𝜔|(𝑘𝑘𝑑𝑑�⃗⃗⃗�𝜔 − �̂�𝜔 ∙ �⃗�𝑣) 𝑏𝑏𝑏𝑏𝑓𝑓𝑑𝑑 (8) 
 

where 𝑏𝑏𝑏𝑏𝑓𝑓𝑑𝑑 is a constant that indicates the direction of 
the propeller’s mounting. 

While the load torque on the propeller due to thrust 
can also be represented similarly, for the sake of 
simplicity, it is approximated by a power balance with 
constant efficiency 𝜂𝜂, as seen in equation 9. An 
additional −𝑘𝑘𝑓𝑓𝑏𝑏𝑣𝑣𝑣𝑣�⃗⃗⃗�𝜔 term is added to represent loss 
purely due to rotor rotation. 
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𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = − �⃗�𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 �̂�𝜔 ∙ �⃗�𝑣

|�⃗⃗⃗�𝜔|𝜂𝜂 − 𝑘𝑘𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟�⃗⃗⃗�𝜔 
(9) 

To better handle when 𝜔𝜔 approaches zero, the �⃗�𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 
is expanded to rewrite the load torque as 

 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝑘𝑘𝑚𝑚�⃗�𝑣(𝑘𝑘𝑟𝑟�⃗⃗⃗�𝜔 − �̂�𝜔 ∙ �⃗�𝑣) 𝑏𝑏𝑙𝑙𝑑𝑑𝑟𝑟
− 𝑘𝑘𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟�⃗⃗⃗�𝜔 

(10) 

The hydrodynamic effects of added mass and wave 
drag are not considered in this implementation. 

The component diagram implementation in Modelica 
is displayed in Figure 3. The propeller is split into two 
sections: the mass of the housing, represented by a 
URBL body, and the actual propeller rotor, represented 
by a Rotor1D component. The propeller is driven by an 
EMF; the Mounting1D components is used to propagate 
the load torques from the propeller to the main ROV 
body. The thrust is calculated as a WorldForce 
component and is applied to the mass of the propeller’s 
housing directly; the load torque from the water is 
applied to the rotor as a one-dimensional torque, leaving 
it uncoupled from the actual ROV. 

 
Figure 3 - Implementation of propeller in Modelica 

2.4 Integration of External Controllers 
Apart from providing the foundational components for 
modeling ROVs, the URBL’s goal is also to provide 
easy integration with the Robot Operating System 
(ROS). ROS (Quigley, 2009) based controllers 
primarily rely on TCP/IP connections for 
communication. The URBL thus includes integration 
for socket communication to ROS, achieved via 
Modelica’s external C function capability. 

The integration is done via a block extended from a 
Multiple-Input-Multiple-Output (MIMO) block from 
the Modelica Standard Library. The extended block 
calls upon an external C function based on a time 
sampler function; the C function returns an array of 
control values read from the incoming information 

queue buffer on the socket port. The socket uses TCP 
protocol for communication, allowing for explicit 
ordering of the flow of information – as opposed to UDP 
protocol. The block contains parameters to set the IP and 
port of the external controller. To have ROS interact 
with the model, a ROS node running a TCP socket was 
also written, allowing the ROS architecture to 
communicate with the model by using the node-socket 
connection as a relay point. The flow of data is shown 
in Figure 4. 

 
Figure 4 - Schematic of Data Flow between Modelica 
and ROS 

2.5 Package Structure 
Figure 5 shows the package structure of the URBL. 

 
Figure 5 - Package Structure of the URBL 
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2.6 Development Review 
The construction of the modeling framework was done 
in Ubuntu 16.04 using Wolfram SystemModeler 
(SystemModeler, Wolfram). The distribution of ROS 
used for testing integration capabilities with control 
platforms was ROS Kinetic. As the mechanism for 
connecting ROS to Modelica was based on using TCP 
sockets, and the build of the model was done in a Linux 
environment, the ROS connectivity is currently only 
usable in *nix environments. 

3 Application of URBL 
The URBL’s applicability is tested by modeling a 
commercially available ROV design – the BlueROV2 
(BlueROV2, Blue Robotics), shown in Figure 6.  

 

 
Figure 6 - Physical BlueROV2 

The BlueROV2 has 6 propellers mounted – 2 dual 
vertical thrusters, and 4 vector-configured thrusters, 
allowing for 6 DOF. It is controlled via a Pixhawk 
Autopilot flight controller running ArduSub. The full 
hardware breakdown of the ROV is shown in Figure 7. 

3.1 Frame Modeling 
The process of assembling the frame of the BlueROV2 
physically from kit is replicated when developing the 
model of its frame. The ROV is built from a base plate, 
two side plates, and four top plates, each a rigid body of 
certain uniform density and mass, with points on the 
body to connect with other parts of the frame. Likewise, 
the frame model was constructed from several sub-
components, each representing one type of frame plate 
– bottom, side, and top – constructed from URBL rigid 
bodies, with frames to represent attachment points to 
other bodies. The resultant total frame is shown in 
Figure 8. 

 
Figure 8 - Visualization of the ROV model 

Figure 7 - Hardware schematic of power and information flow 
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3.2 Propeller Modeling 
The propeller component for the BlueROV2 is extended 
from the URBL’s base propeller model. The T200 
propellers, used on the BlueROV2, are controlled via 
Pulse Position Modulation – to approximate this voltage 
control, a standard signal voltage component was used. 
Each propeller thus has its own internal electric circuit, 
with the signal voltage value controlled externally. By 
doing so, it allows for simpler testing against flight data 
from the physical ROV – the Pixhawk flight controller 
on the BlueROV2 sends pulses to the propeller’s driver 
ESC, which then controls the voltage to the propeller. 
Hence, the model can now run the same commands sent 
by the Pixhawk and ESC driver to the propeller. 

The fore-aft propellers are all oriented at 45-degree 
angles, for lateral movement, while the vertical 
propellers are mounted perpendicular to the mounting 
plate – as shown in Figure 9. Note that propellers 1 and 
2 are facing forward, while propellers 3 and 4 are facing 
backwards; propeller 6 is upwards facing, while 
propeller 5 is downwards facing. 

 
Figure 9 - Propeller orientation diagram [10] 

3.3 Integration of ROS 
The integration with ROS from the URBL library was 
used to receive control values for propeller actuation. A 
joystick was used to provide the values for composite 
motion – to translate these to control values per each 
propeller, a separate controller node was created – the 
flow of control input is shown in Figure 10. 

 
Figure 10 - ROS-based control input flow 
The relationship between the six propeller torques and 
the resultant forces and torques along three dimensions 
was derived as follows: 

 
Figure 11 - Propeller force and torque orientation 

Following the orientation of the propellers shown in 
Figure 11, the equations of forces and torques generated 
by each propeller were derived: 𝜏𝜏𝑖𝑖  represents the 
reaction torque generated by the propeller, �⃗�𝐹𝑖𝑖 the force 
acting on the propeller’s center of mass, ℎ⃗⃗𝑖𝑖 the vector 
from the propeller’s center of mass to that of the ROV, 
and 𝜏𝜏𝐹𝐹𝑖𝑖 the reaction torque acting on the ROV due to 
thrust.  

 
 𝜏𝜏1 = 𝜏𝜏1 sin 45 𝑖𝑖̂ − 𝜏𝜏1 cos 45 �̂�𝑘 (11) 
 �⃗�𝐹1 = 𝐹𝐹1 sin 45 𝑖𝑖̂ − 𝐹𝐹1 cos 45 �̂�𝑘 

= 𝑛𝑛𝜏𝜏1 sin 45 𝑖𝑖̂ − 𝑛𝑛𝜏𝜏1 cos 45 �̂�𝑘 
(12) 

 𝜏𝜏𝐹𝐹1 = ℎ⃗⃗1 × �⃗�𝐹1 = (ℎ1𝑥𝑥𝑖𝑖̂ + ℎ1𝑦𝑦𝑗𝑗̂ + ℎ1𝑧𝑧�̂�𝑘)
× �⃗�𝐹1 

(13) 

 
The relationship between propeller torque and 

propeller thrust is approximated as proportional for the 
purposes of deriving a basic control matrix. The torque 
and force relationships for the other propellers are 
similar to Equations 11 through 13 above, with 
differences in orientation. This leads to the invertible 
matrix shown in the left of the equation in Figure 12, 

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE  
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 

161



describing the relationship between propeller torques 
and composite motion. By applying the inverse of this 
matrix to scale the joystick input, the control values 
were derived. 

3.4 Full ROV Model 
The full ROV model is created by adding the propeller 
to the frame model, to provide the methods of 
propulsion and control to the ROV structure. Selected 
parameterization of the model is listed in the Appendix 
A. The completed ROV model is shown in Figure 13.  

 

 
Figure 13 - Component view of full ROV model in 
Modelica 

4 Testing the ROV Model 
4.1 Component Testing 
The purpose of the component tests is to verify that the 
component’s individual performance conforms to 
expectations. 

4.1.1 Frame Model Tests 
When testing the frame, the frame sub-components are 
placed alone in a body of water, and their size, structure, 
and motion in response to buoyancy is verified – as each 
sub-component of the frame is constructed from HDPE 
(density of 0.97 g/cm3) and symmetric, it has a net 
buoyancy of 0.2 kg, and therefore is expected to slightly 
float upwards. The test results do indicate that all sub-
components, along with the entire frame, exhibit 
normal, stable motion in the water field.  

4.1.2 Propeller Model Tests 
This test checks the propeller’s ability to provide thrust 
to a rigid body in water. To check the model’s stability 
during rotation, the propeller is made to provide thrust 
along different axes of rotation to the end of a neutrally 
buoyant rod. The test results indicate that the propeller 
proceeds stably and smoothly in all orientations, 
matching the expected motion. 

4.2 Full Model Testing 
The full ROV model is tested by providing a constant 
joystick command and evaluating the resulting 
composite motion of the ROV. The tested composite 
motion is the forward motion along the X axis – the 
control values necessary are derived from inverting the 
matrix in Equation 14. 

 
Figure 14 - Results from testing the full ROV model 

In Figure 14, the motion along the X axis is stable, 
while the motion along the other axes after accounting 
for drift, linear and angular, is near zero. The drift seen 
in the rotational values can be attributed to 
approximations made when constructing the control 
matrix. The movement seen along the Y axis is due to 
the net buoyancy of the ROV, and therefore acceptable.  

Figure 12 - Relationship between motor torques and composite motion 
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4.3 Testing ROS Integration 
To test the validity of the model’s external control 
capability – its connection to ROS – a network of ROS 
nodes meant to handle both the model’s feedback and 
the provision of control values is setup. A joystick is 
used to dictate simple motor control values to the model, 
via ROS, and the model’s reaction to the values is 
observed. The joystick sends simple motion commands 
in the orthogonal directions – lateral motion in the XZ 
plane – the raw joystick input is seen in Figure 15. The 
model’s response is displayed in Figure 16. Note that the 
Figure 15 was recorded from ROS and uses the 
operating system time; this is different from the 
simulation time seen in Figure 16. 

 
Figure 15 - Raw Joystick Input 

 
Figure 16 - Results from testing the ROV model when 
providing motor commands from ROS 

The motion along the X axis, and the motion along 
the Z axis are the values being controlled by the 
controller. Drift in the rotation angles around the axes is 
seen, attributable to approximations done in the control 
matrix. A steady, slow rise is seen along the Y axis (in 
orange) due to the net buoyancy of the model. The ROV 
is controlled to move along the XZ plane in accordance 
with the joystick input. The response of the ROV is as 
desired, with appropriate motion when moving along 
each axis separately, as well as when moving in a 
composite manner in the XZ plane. 

5 Conclusions 
5.1 Results Summary 
• The URBL was stably constructed to provide basic 

ROV modeling components, as well as ready-to-use 
integration with ROS 

• The URBL was successfully used to model an 
existing commercially available ROV design, the 
BlueROV2. 

5.2 Further Work 

5.2.1 Library Improvements 
The model of damping was simplified to take the cross-
sectional area of a given component in the plane 
perpendicular to motion as a parameter – an 
improvement would be to have this area as a changing 
quantity.  

The library’s hydrodynamic models are overall 
extremely simplified, and so are currently implemented 
via functions, to increase replaceability. However, this 
possible interchangeability of hydrodynamic force 
functions is still limited in scope by the function 
interface; it could be widened to accept and return any 
number and kind of inputs and outputs. 

For integration with external control mechanisms, the 
current socket-based integration relies on using 
Modelica’s external C function capability and poses 
restrictions on the operating system used for simulation 
– *nix based distributions, and not Windows. Socket 
based communication also has limitations in speed – the 
larger and more computationally intensive the model, 
the slower the socket-based communication will be. 
Further improvement can be done by porting this 
integration to rely on FMI/FMU functionality, instead of 
C functions and sockets. As noted by a reviewer, there 
exists another library for providing TCP/IP connections 
from Modelica via external C-functions, named the 
Modelica_DeviceDrivers library (Thiele, 2017). The 
ROS integration in this paper was developed separately 
from Modelica_DeviceDrivers, though both rely on 
TCP/IP communications.  

5.2.2 Model Improvements 
When prototyping the design of the model, it is useful to 
individually model the bodies involved in the ROV 
structure. However, this adds complexity to the model, 
and makes it simulate slower. Per a reviewer’s 
suggestion, to speed up simulation post prototyping, the 
model should be redrawn with all the rigid bodies 
consolidated into one central mass, to improve 
simulation usefulness. 

5.2.3 Validation Improvements 
The motion profiles tested in the standalone model tests 
could be increased in complexity, from simple 
movements across and around axes, to more composite 
motion in three dimensions. The simulation results 
should also be compared against experimental data from 
the physical vehicle. 

Appendix A – Physical Parameters 
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This is the list of the derived parameters for the 
electronics enclosure and the battery enclosure. 

 

Appendix B – Modelica Implementation of 
Field 
The code for implementing the field is as follows: 

 
Modelica.Mechanics.MultiBody.Forces.WorldF
orceAndTorque field(animation = false); 
protected 
  // Fields 
  outer 
UnderwaterRigidBodyLibrary.Fields.WaterFie
ld waterField; 
  outer Modelica.Mechanics.MultiBody.World 
world; 
equation 
  // equations of motion 
  r_0 = frame_a.r_0; 
  v_0 = der(r_0); 
  a_0 = der(v_0); 
  w_a = 
Modelica.Mechanics.MultiBody.Frames.angula
rVelocity2(frame_a.R); 
  // forces and torques due to fields 
  b_f = waterField.waterBuoyantForce(d = 
density, m = body.m); 
  f_d = waterField.waterDragForce(v = 
body.v_0 - Frames.resolve1(frame_a.R, 
cross(r_CM, w_a)), mu = mu_d, A = A); 
  t_d = Frames.resolve1(frame_a.R, 
waterField.waterDragTorque(w = w_a, k = 
k_d)); 
  // applying force and torques due to 
fields 
  field.force = b_f + f_d; 
  field.torque = 
cross(Frames.resolve1(frame_a.R, r_CM), 
b_f) + t_d + 
cross(Frames.resolve1(frame_a.R, r_CM), 
f_d); 
connect(field.frame_b, body.frame_a); 
connect(frame_a, body.frame_a); 
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