
Developing a Framework for Modeling Underwater Vehicles in
Modelica

Shashank Swaminathan1 Srikanth Saripalli1
1Texas A&M University, College Station, TX, USA, sh.swami235@gmail.com, ssaripalli@tamu.edu

Abstract
When developing Remotely Operated Vehicles (ROVs),
models prove extremely useful in determining design
parameters and control strategies. This paper’s goal is to
develop a modeling framework for underwater ROVs in
Modelica, with integration with the Robotic Operating
System (ROS), allowing for quicker prototyping and
testing of ROV design and control.

Named the Underwater Rigid Body Library (URBL),
the modeling framework treats the effect of water on
submerged bodies as interactions with a “field” of water
to capture the effects of buoyancy and drag. Its usage is
demonstrated by applying it to the BlueROV2, a
commercially available ROV from Blue Robotics.
Using controller signals to the propellers as system
inputs, the model was tested with various motor
command profiles to achieve different composite
motions. Constant motor commands were provided both
from within Modelica and from ROS; the simulation
results indicated that the model responded
appropriately.
Keywords: Underwater, ROV, Modelica, ROS,
Framework

1 Introduction
1.1 Relevant Background
Remotely Operated Vehicles (ROVs) are vital for the
exploration and development of areas that are beyond
the reach of humans, particularly in the underwater field.
When developing any ROV design, it is helpful to
construct a model of the design to provide an idea of its
performance. There exist many models of underwater
vehicle designs like in (Prestero, 2001), but these
models focus specifically upon one vehicle design.
There are very few initiatives geared towards modeling
a variety of underwater bodies and vehicles (McMillian
et al, 1995; Tran et al, 2018), but even these are purpose-
built software programs. The aim of this paper is to
develop a general-purpose modeling framework in
Modelica that can be used to model an ROV design
using prebuilt components and has flexibility to grow as
a library.

The paper will focus on modeling the ROV based off
rigid-body principles, as is done in (Tang, 1999; Wang,

W. et al, 2006). This is as opposed to modeling based
on CFD principles, like in (Yang et al, 2016; Wang, C.,
et al, 2014), as it would be intractable for quick
prototyping and control testing. Representing
hydrodynamic forces, such as viscous drag and added
mass, can be done at varying levels of complexity, as
seen in (Yuh, 1990), and (da Silva et al, 2007). As this
paper’s focus is on developing a modeling framework,
it will only address the most basic of hydrodynamics,
while also providing a template for further expansion by
the user.

1.2 Objectives
The goal for the work described in this paper is to
develop a basic framework for mathematically
modeling underwater vehicles that can:
• Aid the prototyping and testing of vehicle design

and controls.
• Be readily integrated with common control and

feedback mechanisms, specifically ROS.
• Visualize prototype design and test results via three-

dimensional animation.
In Section 2, the modeling framework URBL is

discussed in detail. In Section 3, a demonstration of the
modeling framework is done via a use case of modeling
a physical ROV. Section 4 follows with verification
tests of the model developed from the framework, and
the ROS interface capability of the model. Section 5
provides the final remarks and closes the paper.

2 Underwater Rigid Body Library.
2.1 Overview
The modeling framework is developed as the
Underwater Rigid Body Library (URBL) – the library
contains the base functional components to any ROV
design. The URBL consists of two major sections –
components and interfaces for modeling underwater
vehicles, and an external interface to ROS. The URBL
components are models to describe rigid body
interactions with water; the interface is for a basic
propeller.

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

157

2.2 Rigid Body and Field Model
As modeling within Modelica is component-based, it is
imperative to develop a rigid body component that can
interact with the surrounding submerging fluid
environment. To accomplish this, the framework
represents the environment via a field. The fluid is
assumed to be an incompressible Newtonian fluid. The
field is considered to have two primary interactions with
the rigid body – one via the buoyancy and the other via
fluid drag forces exerted by the fluid on the rigid body.
This is written into the model as shown below, with
𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 being the density of the rigid body, 𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏 the
density of the submergent fluid, 𝜈𝜈𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑏𝑏𝑣𝑣𝑓𝑓𝑣𝑣𝑏𝑏 being the
coefficient of viscosity, and 𝐴𝐴 being the cross-sectional
area of the body.

 𝑓𝑓𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣 ∶= −
𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∙ 𝑚𝑚 ∙ �⃗�𝑔 (1)

 𝑓𝑓𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 ∶= −𝜈𝜈𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑏𝑏𝑣𝑣𝑓𝑓𝑣𝑣𝑏𝑏 ∙ 𝐴𝐴 ∙ �⃗�𝑣

(2)

Here, �⃗�𝑣 represents the velocity of the body, �⃗�𝑔 the
gravitational acceleration, and 𝑚𝑚 the mass. To account
for drag torques purely due to angular speed �⃗⃗⃗�𝜔, the
following equation is added to the drag computation:

 𝜏𝜏𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 = −𝑘𝑘𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 ∙ �⃗⃗⃗�𝜔 (3)
where 𝑘𝑘𝑏𝑏𝑑𝑑𝑏𝑏𝑑𝑑 represents the coefficient of drag

rotationally (Wadoo, Kachroo, 2016).
The field model dictates the values of the forces

affecting bodies within. The field’s force is applied
equally across all elements in the field. However, when
dealing with a rigid body, where the only interface
available is the Frame of Interest (F.O.I), it is not
possible to implement the field in such a manner.
Instead, the total force the field applies on the body at
the center of mass (CM) is translated to the F.O.I, as
seen in Figure 1.

Figure 1 – Translation of buoyant and drag forces
from center of mass to frame of interest

The rigid body model itself is extended from the
standard MultiBody Library (Otter, 2003). The field
model is added to the rigid body model, using the inner
and outer qualifiers in Modelica, so that any component
constructed from this rigid body model will interact with

the fluid surrounding the component, regardless of
design. The Modelica-specific implementation is shown
in Appendix B.

2.3 Propeller Model
The schematic in Figure 2 captures the torque and

thrust generation in the propeller – the electric motor is
captured through the EMF, and the propeller frame
captures the momentum exchange between the blades
and the water.

Figure 2 - Schematic of propeller structure

The propeller’s rotor is powered by a motor, which in
turn is powered by some external source of power. From
(Triantafyllou, 2004), the thrust can be written as
proportional to the square of the rotor’s angular velocity
𝜔𝜔.

 𝐹𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 ∝ 𝜔𝜔2, 𝐾𝐾𝑇𝑇(𝐽𝐽∗) (4)
𝐾𝐾𝑇𝑇(𝐽𝐽∗) is the thrust coefficient, where 𝐽𝐽∗ is the ratio

between rotor speed (intake speed) and fluid speed
(outtake speed). Specifically, 𝐾𝐾𝑇𝑇(𝐽𝐽∗) can be
approximated (Triantafyllou, 2004) as follows:

 𝐾𝐾𝑇𝑇(𝐽𝐽∗) = 𝛽𝛽1 − 𝛽𝛽2𝐽𝐽∗ (5)
 𝐽𝐽∗ = 𝑣𝑣

𝜔𝜔 (6)

Here, 𝛽𝛽1 and 𝛽𝛽2 are functions of the intake and
outtake speeds of the water.

Taking 𝑣𝑣 and 𝜔𝜔 as the linear and angular velocities of
the propeller along its axis, Equation 4 can be rewritten
as follows:

 𝐹𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 ∝ 𝜔𝜔2 (𝛽𝛽1 − 𝛽𝛽2
𝑣𝑣
𝜔𝜔) (7)

Letting 𝑘𝑘𝑑𝑑, 𝑘𝑘𝑚𝑚 be appropriate constants of
proportionality, it can be rewritten as

 �⃗�𝐹𝑣𝑣ℎ𝑑𝑑𝑓𝑓𝑣𝑣𝑣𝑣 = 𝑘𝑘𝑚𝑚|𝜔𝜔|(𝑘𝑘𝑑𝑑�⃗⃗⃗�𝜔 − �̂�𝜔 ∙ �⃗�𝑣) 𝑏𝑏𝑏𝑏𝑓𝑓𝑑𝑑 (8)

where 𝑏𝑏𝑏𝑏𝑓𝑓𝑑𝑑 is a constant that indicates the direction of
the propeller’s mounting.

While the load torque on the propeller due to thrust
can also be represented similarly, for the sake of
simplicity, it is approximated by a power balance with
constant efficiency 𝜂𝜂, as seen in equation 9. An
additional −𝑘𝑘𝑓𝑓𝑏𝑏𝑣𝑣𝑣𝑣�⃗⃗⃗�𝜔 term is added to represent loss
purely due to rotor rotation.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

158

𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = − �⃗�𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 �̂�𝜔 ∙ �⃗�𝑣

|�⃗⃗⃗�𝜔|𝜂𝜂 − 𝑘𝑘𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟�⃗⃗⃗�𝜔
(9)

To better handle when 𝜔𝜔 approaches zero, the �⃗�𝐹𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
is expanded to rewrite the load torque as

 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝑘𝑘𝑚𝑚�⃗�𝑣(𝑘𝑘𝑟𝑟�⃗⃗⃗�𝜔 − �̂�𝜔 ∙ �⃗�𝑣) 𝑏𝑏𝑙𝑙𝑑𝑑𝑟𝑟
− 𝑘𝑘𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟�⃗⃗⃗�𝜔

(10)

The hydrodynamic effects of added mass and wave
drag are not considered in this implementation.

The component diagram implementation in Modelica
is displayed in Figure 3. The propeller is split into two
sections: the mass of the housing, represented by a
URBL body, and the actual propeller rotor, represented
by a Rotor1D component. The propeller is driven by an
EMF; the Mounting1D components is used to propagate
the load torques from the propeller to the main ROV
body. The thrust is calculated as a WorldForce
component and is applied to the mass of the propeller’s
housing directly; the load torque from the water is
applied to the rotor as a one-dimensional torque, leaving
it uncoupled from the actual ROV.

Figure 3 - Implementation of propeller in Modelica

2.4 Integration of External Controllers
Apart from providing the foundational components for
modeling ROVs, the URBL’s goal is also to provide
easy integration with the Robot Operating System
(ROS). ROS (Quigley, 2009) based controllers
primarily rely on TCP/IP connections for
communication. The URBL thus includes integration
for socket communication to ROS, achieved via
Modelica’s external C function capability.

The integration is done via a block extended from a
Multiple-Input-Multiple-Output (MIMO) block from
the Modelica Standard Library. The extended block
calls upon an external C function based on a time
sampler function; the C function returns an array of
control values read from the incoming information

queue buffer on the socket port. The socket uses TCP
protocol for communication, allowing for explicit
ordering of the flow of information – as opposed to UDP
protocol. The block contains parameters to set the IP and
port of the external controller. To have ROS interact
with the model, a ROS node running a TCP socket was
also written, allowing the ROS architecture to
communicate with the model by using the node-socket
connection as a relay point. The flow of data is shown
in Figure 4.

Figure 4 - Schematic of Data Flow between Modelica
and ROS

2.5 Package Structure
Figure 5 shows the package structure of the URBL.

Figure 5 - Package Structure of the URBL

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

159

2.6 Development Review
The construction of the modeling framework was done
in Ubuntu 16.04 using Wolfram SystemModeler
(SystemModeler, Wolfram). The distribution of ROS
used for testing integration capabilities with control
platforms was ROS Kinetic. As the mechanism for
connecting ROS to Modelica was based on using TCP
sockets, and the build of the model was done in a Linux
environment, the ROS connectivity is currently only
usable in *nix environments.

3 Application of URBL
The URBL’s applicability is tested by modeling a
commercially available ROV design – the BlueROV2
(BlueROV2, Blue Robotics), shown in Figure 6.

Figure 6 - Physical BlueROV2

The BlueROV2 has 6 propellers mounted – 2 dual
vertical thrusters, and 4 vector-configured thrusters,
allowing for 6 DOF. It is controlled via a Pixhawk
Autopilot flight controller running ArduSub. The full
hardware breakdown of the ROV is shown in Figure 7.

3.1 Frame Modeling
The process of assembling the frame of the BlueROV2
physically from kit is replicated when developing the
model of its frame. The ROV is built from a base plate,
two side plates, and four top plates, each a rigid body of
certain uniform density and mass, with points on the
body to connect with other parts of the frame. Likewise,
the frame model was constructed from several sub-
components, each representing one type of frame plate
– bottom, side, and top – constructed from URBL rigid
bodies, with frames to represent attachment points to
other bodies. The resultant total frame is shown in
Figure 8.

Figure 8 - Visualization of the ROV model

Figure 7 - Hardware schematic of power and information flow

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

160

3.2 Propeller Modeling
The propeller component for the BlueROV2 is extended
from the URBL’s base propeller model. The T200
propellers, used on the BlueROV2, are controlled via
Pulse Position Modulation – to approximate this voltage
control, a standard signal voltage component was used.
Each propeller thus has its own internal electric circuit,
with the signal voltage value controlled externally. By
doing so, it allows for simpler testing against flight data
from the physical ROV – the Pixhawk flight controller
on the BlueROV2 sends pulses to the propeller’s driver
ESC, which then controls the voltage to the propeller.
Hence, the model can now run the same commands sent
by the Pixhawk and ESC driver to the propeller.

The fore-aft propellers are all oriented at 45-degree
angles, for lateral movement, while the vertical
propellers are mounted perpendicular to the mounting
plate – as shown in Figure 9. Note that propellers 1 and
2 are facing forward, while propellers 3 and 4 are facing
backwards; propeller 6 is upwards facing, while
propeller 5 is downwards facing.

Figure 9 - Propeller orientation diagram [10]

3.3 Integration of ROS
The integration with ROS from the URBL library was
used to receive control values for propeller actuation. A
joystick was used to provide the values for composite
motion – to translate these to control values per each
propeller, a separate controller node was created – the
flow of control input is shown in Figure 10.

Figure 10 - ROS-based control input flow
The relationship between the six propeller torques and
the resultant forces and torques along three dimensions
was derived as follows:

Figure 11 - Propeller force and torque orientation

Following the orientation of the propellers shown in
Figure 11, the equations of forces and torques generated
by each propeller were derived: 𝜏𝜏𝑖𝑖 represents the
reaction torque generated by the propeller, �⃗�𝐹𝑖𝑖 the force
acting on the propeller’s center of mass, ℎ⃗⃗𝑖𝑖 the vector
from the propeller’s center of mass to that of the ROV,
and 𝜏𝜏𝐹𝐹𝑖𝑖 the reaction torque acting on the ROV due to
thrust.

 𝜏𝜏1 = 𝜏𝜏1 sin 45 𝑖𝑖̂ − 𝜏𝜏1 cos 45 �̂�𝑘 (11)
 �⃗�𝐹1 = 𝐹𝐹1 sin 45 𝑖𝑖̂ − 𝐹𝐹1 cos 45 �̂�𝑘

= 𝑛𝑛𝜏𝜏1 sin 45 𝑖𝑖̂ − 𝑛𝑛𝜏𝜏1 cos 45 �̂�𝑘
(12)

 𝜏𝜏𝐹𝐹1 = ℎ⃗⃗1 × �⃗�𝐹1 = (ℎ1𝑥𝑥𝑖𝑖̂ + ℎ1𝑦𝑦𝑗𝑗̂ + ℎ1𝑧𝑧�̂�𝑘)
× �⃗�𝐹1

(13)

The relationship between propeller torque and

propeller thrust is approximated as proportional for the
purposes of deriving a basic control matrix. The torque
and force relationships for the other propellers are
similar to Equations 11 through 13 above, with
differences in orientation. This leads to the invertible
matrix shown in the left of the equation in Figure 12,

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

161

describing the relationship between propeller torques
and composite motion. By applying the inverse of this
matrix to scale the joystick input, the control values
were derived.

3.4 Full ROV Model
The full ROV model is created by adding the propeller
to the frame model, to provide the methods of
propulsion and control to the ROV structure. Selected
parameterization of the model is listed in the Appendix
A. The completed ROV model is shown in Figure 13.

Figure 13 - Component view of full ROV model in
Modelica

4 Testing the ROV Model
4.1 Component Testing
The purpose of the component tests is to verify that the
component’s individual performance conforms to
expectations.

4.1.1 Frame Model Tests
When testing the frame, the frame sub-components are
placed alone in a body of water, and their size, structure,
and motion in response to buoyancy is verified – as each
sub-component of the frame is constructed from HDPE
(density of 0.97 g/cm3) and symmetric, it has a net
buoyancy of 0.2 kg, and therefore is expected to slightly
float upwards. The test results do indicate that all sub-
components, along with the entire frame, exhibit
normal, stable motion in the water field.

4.1.2 Propeller Model Tests
This test checks the propeller’s ability to provide thrust
to a rigid body in water. To check the model’s stability
during rotation, the propeller is made to provide thrust
along different axes of rotation to the end of a neutrally
buoyant rod. The test results indicate that the propeller
proceeds stably and smoothly in all orientations,
matching the expected motion.

4.2 Full Model Testing
The full ROV model is tested by providing a constant
joystick command and evaluating the resulting
composite motion of the ROV. The tested composite
motion is the forward motion along the X axis – the
control values necessary are derived from inverting the
matrix in Equation 14.

Figure 14 - Results from testing the full ROV model

In Figure 14, the motion along the X axis is stable,
while the motion along the other axes after accounting
for drift, linear and angular, is near zero. The drift seen
in the rotational values can be attributed to
approximations made when constructing the control
matrix. The movement seen along the Y axis is due to
the net buoyancy of the ROV, and therefore acceptable.

Figure 12 - Relationship between motor torques and composite motion

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

162

4.3 Testing ROS Integration
To test the validity of the model’s external control
capability – its connection to ROS – a network of ROS
nodes meant to handle both the model’s feedback and
the provision of control values is setup. A joystick is
used to dictate simple motor control values to the model,
via ROS, and the model’s reaction to the values is
observed. The joystick sends simple motion commands
in the orthogonal directions – lateral motion in the XZ
plane – the raw joystick input is seen in Figure 15. The
model’s response is displayed in Figure 16. Note that the
Figure 15 was recorded from ROS and uses the
operating system time; this is different from the
simulation time seen in Figure 16.

Figure 15 - Raw Joystick Input

Figure 16 - Results from testing the ROV model when
providing motor commands from ROS

The motion along the X axis, and the motion along
the Z axis are the values being controlled by the
controller. Drift in the rotation angles around the axes is
seen, attributable to approximations done in the control
matrix. A steady, slow rise is seen along the Y axis (in
orange) due to the net buoyancy of the model. The ROV
is controlled to move along the XZ plane in accordance
with the joystick input. The response of the ROV is as
desired, with appropriate motion when moving along
each axis separately, as well as when moving in a
composite manner in the XZ plane.

5 Conclusions
5.1 Results Summary
• The URBL was stably constructed to provide basic

ROV modeling components, as well as ready-to-use
integration with ROS

• The URBL was successfully used to model an
existing commercially available ROV design, the
BlueROV2.

5.2 Further Work

5.2.1 Library Improvements
The model of damping was simplified to take the cross-
sectional area of a given component in the plane
perpendicular to motion as a parameter – an
improvement would be to have this area as a changing
quantity.

The library’s hydrodynamic models are overall
extremely simplified, and so are currently implemented
via functions, to increase replaceability. However, this
possible interchangeability of hydrodynamic force
functions is still limited in scope by the function
interface; it could be widened to accept and return any
number and kind of inputs and outputs.

For integration with external control mechanisms, the
current socket-based integration relies on using
Modelica’s external C function capability and poses
restrictions on the operating system used for simulation
– *nix based distributions, and not Windows. Socket
based communication also has limitations in speed – the
larger and more computationally intensive the model,
the slower the socket-based communication will be.
Further improvement can be done by porting this
integration to rely on FMI/FMU functionality, instead of
C functions and sockets. As noted by a reviewer, there
exists another library for providing TCP/IP connections
from Modelica via external C-functions, named the
Modelica_DeviceDrivers library (Thiele, 2017). The
ROS integration in this paper was developed separately
from Modelica_DeviceDrivers, though both rely on
TCP/IP communications.

5.2.2 Model Improvements
When prototyping the design of the model, it is useful to
individually model the bodies involved in the ROV
structure. However, this adds complexity to the model,
and makes it simulate slower. Per a reviewer’s
suggestion, to speed up simulation post prototyping, the
model should be redrawn with all the rigid bodies
consolidated into one central mass, to improve
simulation usefulness.

5.2.3 Validation Improvements
The motion profiles tested in the standalone model tests
could be increased in complexity, from simple
movements across and around axes, to more composite
motion in three dimensions. The simulation results
should also be compared against experimental data from
the physical vehicle.

Appendix A – Physical Parameters

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP18154157 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

163

This is the list of the derived parameters for the
electronics enclosure and the battery enclosure.

Appendix B – Modelica Implementation of
Field
The code for implementing the field is as follows:

Modelica.Mechanics.MultiBody.Forces.WorldF
orceAndTorque field(animation = false);
protected
 // Fields
 outer
UnderwaterRigidBodyLibrary.Fields.WaterFie
ld waterField;
 outer Modelica.Mechanics.MultiBody.World
world;
equation
 // equations of motion
 r_0 = frame_a.r_0;
 v_0 = der(r_0);
 a_0 = der(v_0);
 w_a =
Modelica.Mechanics.MultiBody.Frames.angula
rVelocity2(frame_a.R);
 // forces and torques due to fields
 b_f = waterField.waterBuoyantForce(d =
density, m = body.m);
 f_d = waterField.waterDragForce(v =
body.v_0 - Frames.resolve1(frame_a.R,
cross(r_CM, w_a)), mu = mu_d, A = A);
 t_d = Frames.resolve1(frame_a.R,
waterField.waterDragTorque(w = w_a, k =
k_d));
 // applying force and torques due to
fields
 field.force = b_f + f_d;
 field.torque =
cross(Frames.resolve1(frame_a.R, r_CM),
b_f) + t_d +
cross(Frames.resolve1(frame_a.R, r_CM),
f_d);
connect(field.frame_b, body.frame_a);
connect(frame_a, body.frame_a);

References
J. Evans, M. Nahon, Dynamics modeling and performance

evaluation of an autonomous underwater vehicle, Ocean
Engineering, Volume 31, Issues 14–15, 2004, Pages 1835-
1858, ISSN 0029-8018,
doi:10.1016/j.oceaneng.2004.02.006

McMillian, S., Orin, D. E., & McGhee, R. B. (1995).
DynaMechs: An object oriented software package for
efficient dynamic simulation of underwater robotic
vehicles.

Otter, M., Elmquist H, Mattson S. E., “The New Modelica
Multibody Library”, Proceedings of the 3rd International
Modelica Conference, Linkopig, 2003

Prestero, T. (2001). Development of a six-degree of freedom
simulation model for the REMUS autonomous underwater
vehicle. In OCEANS, 2001. MTS/IEEE Conference and
Exhibition (Vol. 1, pp. 450-455). IEEE.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., ... & Ng, A. Y. (2009, May). ROS: an open-source
Robot Operating System. In ICRA workshop on open source
software (Vol. 3, No. 3.2, p. 5).

da Silva, J. E., Terra, B., Martins, R., & de Sousa, J. B. (2007,
August). Modeling and simulation of the lauv autonomous
underwater vehicle. In 13th IEEE IFAC International
Conference on Methods and Models in Automation and
Robotics. Szczecin, Poland Szczecin, Poland.

Tang, S. C. (1999). Modeling and simulation of the
autonomous underwater vehicle, Autolycus (Doctoral
dissertation, Massachusetts Institute of Technology).

Thiele, B., Beutlich, T., Waurich, V., Sjölund, M., &
Bellmann, T. (2017, July). Towards a Standard-Conform,
Platform-Generic and Feature-Rich Modelica Device
Drivers Library. In Proceedings of the 12th International
Modelica Conference, Prague, Czech Republic, May 15-17,
2017 (No. 132, pp. 713-723). Linköping University
Electronic Press.

Tran M., Binns J., Chai S., Forrest A., Nguyen H. (2018)
AUVSIPRO – A Simulation Program for Performance
Prediction of Autonomous Underwater Vehicle with
Different Propulsion System Configurations. In: Mazal J.
(eds) Modelling and Simulation for Autonomous Systems.
MESAS 2017. Lecture Notes in Computer Science, vol
10756. Springer, Cham

M. Triantafyllou. 2.154 Maneuvering and Control of Surface
and Underwater Vehicles (13.49). Fall 2004. Massachusetts
Institute of Technology: MIT OpenCourseWare,
https://ocw.mit.edu. License: Creative Commons BY-NC-
SA

Wadoo, S., & Kachroo, P. (2016). Autonomous underwater
vehicles: modeling, control design and simulation. CRC
Press.

Wang, C., Zhang, F., & Schaefer, D. (2015). Dynamic
modeling of an autonomous underwater vehicle. Journal of
Marine Science and Technology, 20(2), 199-212.

Wang, W., & Clark, C. M. (2006). Modeling and simulation
of the VideoRay Pro III underwater vehicle. Computer
Science and Software Engineering, 66.

Yang, R., Probst, I., Mansours, A., Li, M., & Clement, B.
(2016). Underwater vehicle modeling and control
application to ciscrea robot. In Quantitative Monitoring of
the Underwater Environment (pp. 89-106). Springer, Cham.

Yuh, J. (1990). Modeling and control of underwater robotic
vehicles. IEEE Transactions on Systems, man, and
Cybernetics, 20(6), 1475-1483.

SystemModeler (2015) Copyright © 2015 Wolfram Research,
Inc. http://wolfram.com/system-modeler/

BlueROV2, Blue Robotics, Inc.
http://docs.bluerobotics.com/brov2/

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP18154157

164

