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Abstract
Current biomedical models are so extensive that their 
description (and reproducibility) requires more than a 
set of equations. Journal papers are thus frequently ac-
companied by electronic enclosures with detailed model 
descriptions, or even better, with a complete model source 
code. Specific electronic archives associated with specific 
languages and publicly accessible simulation platforms 
for the creation and archiving of biomedical models have 
been set up, however each of them has some disadvan-
tage and an agreement on a common language for model 
sharing is missing. This paper reviews the usage of the 
languages for physiological modeling and discusses the 
advantages of the Modelica language in the area of physi-
ological simulations. 

Keywords: Physiology, Integrative models, Physiome 
project, Biomedical models archiving, Biomedical models 
publishing

1 The origin - a web of physiological 
regulations
In 1972 the medical journal Annual Review of Physiology 
published a paper (A. C. Guyton, Coleman, & Granger, 
1972) which, at first glance, was absolutely different from 
typical physiological papers published at those times. A 
substantial part of the paper consisted of an extensive lay-
out in a pasted-in enclosure. The layout, full of lines and 
interconnected elements, reminded slightly of the layouts 
of electric systems (Fig. 1). However, instead of electrical 
components, the layout displayed interconnected comput-
er blocks (multipliers, dividers, adders, integrators, func-
tional blocks) representing mathematical operations on 
physiological quantities (Fig. 2). 

Bundles of connecting conductors between the blocks 
expressed, at first glance, complex feedback connection 
of physiological quantities. The blocks were grouped into 
18 units representing interconnected physiological sub-
systems (Fig. 3). This was an entirely novel approach to 
the description of physiological regulations of the circu-
latory system and its broader physiological context and 
links to the other body subsystems – kidneys, regulation 
of volume and electrolyte equilibrium, etc., by means of 
graphical mathematical symbols. The complex systems 
of mathematical equations were replaced by a graphi-
cal representation of the mathematical relations. This 

syntax allowed connections between the various physi-
ological quantities to be represented by interconnected 
blocks standing for mathematical operations.  Thus the 
entire layout was a formalized description of physi-
ological interrelations in the circulatory system using a 
graphically represented mathematical model. The model 
description itself consisted mainly of a basic (still fully 
illustrative) picture. Any comments and justifications of 
the mathematical relation formulations were brief only. 
This required the reader (having a solid physiological and 
mathematical background) to fully concentrate in order to 
gain an understanding of the meaning of the formalized 
relations between/among the physiological quantities.
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Figure 2. Individual elements in the scheme of the Guyton’s 
model represent mathematical operations whose connections 
represent graphically expressed mathematical equations. 
Blocks in the original Guyton notation (1972), and the same 
blocks in Simulink (1990).

Figure 1.  Diagram of Guyton’s model  (Guyton et al., 1972).
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A monography (Arthur C. Guyton, Jones, & Coleman, 
1973) in which many of the approaches were explained 
in more detail was published a year later and a further 
monograph, by Guyton et al. (Arthur C. Guyton, Taylor, 
& Granger, 1975), presenting a reasonably detailed expla-
nation of the mathematical formalization of the body fluid 
dynamics description, appeared in 1975.

2. Formalization of physiological 
relations – the PHYSIOME Project
Guyton’s model was a milestone of sorts, applying a sys-
tem approach to physiological regulations and describing 
the dynamics of interrelations between/among physi-
ological subsystems by means of a system of graphically 
represented mathematical equations. Guyton’s graphical 
diagram marked the emergence of an area of physiologi-
cal research into the interconnected physiological systems 
in the living body, now referred to as “integrative physiol-
ogy” (Coleman & Summers, 1997; Mangourova, Ring-
wood, & Van Vliet, 2011; Reinhardt & Seeliger, 2000). 

Much as how theoretical physics strives to describe 
physical reality and explain the results of experimental 
research, “integrative physiology” tries, based on experi-
mental results, to set up a formalized description of the 
interconnections of physiological regulations and explain 
their function both in the healthy body and during the de-
velopment of various diseases. 

Formalization, i.e. replacement of a verbal descrip-
tion of physiological systems with the precise language 
of mathematics, is closely linked to the issue of computer 
modeling. It is an asset of the formal description that de-
ductions regarding the behavior of a system described by 
formalized tools are made based on the rules of a formal-
ized language, i.e. by solving the equations of a mathe-
matical model. This is a task that can be left to a computer 
– the computer solves equations describing the biological 
reality – and so it is computer simulation that is involved.

The concept of formalization started later and progress 
is somewhat slower in biological and medical sciences 
than in physics, chemistry and technology, because bio-
logical systems are much more complex. While the for-
malization process in physics started as early as the 17th 
century, formalization in medical and biological sciences 
came only together with cybernetics and computer sci-
ence. This field of science uses computer models set up 
based on a mathematical description of the biological re-
ality.

Formalized description of physiological systems is cur-
rently the subject of the international PHYSIOME Project 
(http://www.physiome.org), successor to the GENOME 
Project whose outcome consisted in a detailed description 
of the human genome. The aim of the PHYSIOME Proj-
ect is to provide a formalized description of physiologi-
cal functions (Bassingthwaighte, 2000; P. Hunter, 2016; 
Peter J. Hunter, Crampin, & Nielsen, 2008; P. J. Hunter, 
Li, McCulloch, & Noble, 2006; P. Hunter, Robbins, & 
Noble, 2002; Omholt & Hunter, 2016). Physiome makes 
efforts to apply the formalized approach in order to inte-
grate our knowledge, from the cell level to the organ level 
to the whole-body level, with a view to gaining insight 
into how all that works as a whole. The European initia-
tive in this area is represented by the The International 
Union of Physiological Sciences (IUPS) http://www.iups.
org/physiome-project/. The work of the IUPS Physiome 
Project has been boosted by the European Commission-
funded VIRTUAL PHYSIOLOGICAL HUMAN INI-
TIATIVE project (under the virtual physiological human 
institute http://www.vph-institute.org/ ), aiming, among 
other things, to apply the formalized approach to human 
physiology in clinical medicine and to use computer mod-
els in pre-clinical trials.

Integrative models of laboratory animals have been de-
veloping lately in addition to the integrative models of 
human physiology. For example, the aim of the VIRTU-
AL RAT project (http://www.virtualrat.org/) is to set up a 
complex model of the laboratory rat, which can readily be 
validated against experimental data on laboratory animals 
(Beard et al., 2012).

3. New modeling environments
In the meantime, general software simulation environ-
ments emerged, enabling models to be developed in a 
graphical format and allowing them to be debugged and 
ultimately verified. Among them is the widely used Mat-
lab/Simulink tool from Mathworks, enabling a simulation 
model to be composed from various pre-defined compo-
nents visually by drag-and-drop into the simulation net-
works. The Simulink blocks are very similar to the ele-
ments used by Guyton for a formalized representation of 
physiological relations. They actually differ in the graphi-
cal format only.

Figure 3. Interconnected physiological subsystems in the 
Guyton’s model (Guyton et al., 1972).
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abled the behavior of the model to be tested.

This however introduces additional problem in ver-
sioning - the published version may produce different re-
sults than the later, usually further updated, provided on 
request.

It is a generally adopted principle that if a result is 
described in a scientific journal, then the experimental 
design must be reproducible at another workplace. The 
reproducibility principle plays a key role in scientists’ ef-
forts to disclose the secrets of Nature. 

Actually, however, it is often violated in scientific pub-
lications dealing with biomedical models. This is not al-
ways a mistake of the authors – frequently just some letter 
or index is omitted, and it is then very difficult for the 
reader to understand the model or even to implement it. 

The reviewers do not reimplement the models from the 
description (as they usually have the underlying code ac-
cessible on request) and thus the equations could easily 
contain a mistake.

Also, biomedical models are often so complex that the 
limited space allocated for the paper allows the authors 
just to present the basic model equations (and sometimes 
not all of them) and no space remains for additional infor-
mation (starting values of variables of state, all parameter 
values, solver settings etc.) that is needed to set up the 
model at another workplace. Also, a number of articles do 
synthese multiple models together, be it an extension of 
their previous research or adopted from literature. The de-
tails of combining the old (and referenced) with the newly 
presented do often raise a number of issues.

From our teaching experience, around 80 % of models 
implemented based solely on a description in a published 
article were incomplete or contained some error, which 
makes the model unusable.Nielsen et al. also support our 
observation of difficult reproducibility (Nielsen, Nilsson, 
& Matheson, 2012). A scientific paper describing a model 
should thus be accompanied by a digital enclosure (acces-
sible on the Internet) containing a detailed description of 
the model structure, including the values of all parameters 
and most of all containing a complete source code in a 
common, formal programming language, adequate for the 
reader to be able to run the model, reproduce the model 
results and to potentially use the model as a basis for their 
own work where appropriate. The sharing of the complete 
source code is becoming common practice and even a re-
quirement in a number of journals publishing scientific 
papers on computer models, especially the open-access 
ones.

5. Repositories of biomedical system 
models
A serious obstacle arises if a model is published in a 

This similarity of Guyton’s approach and philosophy of 
Simulink software inspired us to revive the old traditional 
Guyton’s diagram by means of Simulink and transform it 
into a functional simulation model (Jiří Kofranek & Rusz, 
2010). The appearance of the Simulink model could be 
nearly identical with that of the initial layout (Fig. 4). 

Simulation visualization contained a number of errors 
(or rather “graphical typos”) in the initial layout. This 
poses no problem in a drawn picture, but the moment you 
try to revive it in Simulink, the model collapses as a whole 
immediately. 

4. Model presentation in scientific 
publications
Guyton’s diagram is just an illustrative picture condens-
ing a system of equations describing a complex model 
into a graphic form. Since the description contained er-
rors, it was difficult to reproduce the model based on the 
graphical diagram only. However, the authors made the 
model program in Fortran available on request, which en-

8

Obr. 6 – Detailnější zobrazení centrální struktury Guytonova modelu v původní grafické notaci (horní část obráz-
ku) a v simulinkové implementaci (dolní část obrázku) vyjadřující průtoky agregovanými částmi krevního řečiště 

a činnost srdce jako pumpy.
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AAR-afferent arteriolar resistance [torr/l/min]
AHM-antidiuretic hormone multiplier, ratio of normal effect
AM-aldosterone multiplier, ratio of normal effect
AMC-aldosterone concentration
AMM-muscle vascular constriction caused by local tissue control, ratio to resting state
AMP-effect of arterial pressure on rate of aldosterone secretion
AMR-effect of sodium to potassium ratio on aldosterone secretion rate
AMT-time constant of aldosterone accumulation and destruction
ANC-angiotensin concentration
ANM-angiotensin multiplier effect on vascular resistance, ratio to normal
ANN-effect of sodium concentration on rate of angiotensin formation
ANP-effect of renal blood flow on angiotensin formation
ANT-time constant of angiotensin accumulation and destruction
ANU-nonrenal effect of angiotensin
AOM-autonomic effect on tissue oxygen utilization
APD-afferent arteriolar pressure drop [torr]
ARF-intensity of sympathetic effects on renal function
ARM-vasoconstrictor effect of all types of autoregulation
AR1-vasoconstrictor effect of rapid autoregulation
AR2-vasoconstrictor effects of intermediate autoregulation
AR3-vasoconstrictor effect of long-term autoregulation
AU-overall activity of autonomic system, ratio to normal
AUB-effect of baroreceptors on autoregulation
AUC-effect of chemoreceptors on autonomic stimulation
AUH-autonomic stimulation of heart, ratio to normal

DLP-rate of formation of plasma protein by liver [g/min]
DOB-rate of oxygen delivery to non-muscle cells [ml O2/min]
DPA-rate of increase in pulmonary volume [l/min]
DPC-rate of loss of plasma proteins through systemic capillaries [g/min]
DPI-rate of change of protein in free interstitial fluid [g/min]
DPL-rate of systemic lymphatic return of protein [g/min]
DPO -rate of loss of plasma protein [g/min]
DRA-rate of increase in right atrial volume [l/min]
DVS-rate of increase in venous vascular volume [l/min]
EVR-postglomerular resistance [torr/l]
EXC-exercise activity, ratio to activity at rest
EXE-exercise effect on autonomic stimulation
GFN-glomerular filtration rate of undamaged kidney [l/min]
GFR-glomerular filtration rate [l/min]
GLP-glomerular pressure [torr]
GPD-rate of increase of protein in gel  [l/min]
GPR-total protein in gel  [g]
HM-hematocrit [%]
HMD-cardiac depressant effect of hypoxia
HPL-hypertrophy effect on left ventricle
HPR-hypertrophy effect on heart, ratio to normal
HR-heart rate [beats/min]
HSL-basic left ventricular strength
HSR-basic strength of right ventricle
HYL-quantity of hyaluronic acid in tissues [g]
IFP-interstitial fluid protein [g]
KCD-rate of change of potassium concentration [mmol/min]
KE-total extracellular fluid potassium [mmol]
KED-rate of change of extracellular fluid potassium concentration [mmol/min]
KI-total intracellular potassium concentration [mmol/l]

KID-rate of potassium intake [mmol/min]
KOD-rate of renal loss of potassium [mmol/min]
LVM-effect of aortic pressure on left ventricular output
MMO-rate of oxygen utilization by muscle cells [ml/min]
M02--rate of oxygen utilization by non-muscle cells [ml/min]
NAE-total extracellular sodium [mmol]
NED-rate of change of sodium in intracellular fluids [mmol/min]
NID-rate of sodium intake [mmol/min]
NOD-rate of renal excretion of sodium [mmol/min]
OMM-muscle oxygen utilization at rest [ml/min]
OSA-aortic oxygen saturation
OSV-non-muscle venous oxygen saturation
OVA-oxygen volume in aortic blood [ml O2/l blood]
OVS-muscle venous oxygen saturation
O2M-basic oxygen utilization in non-muscle body tissues [ml/min]
PA-aortic pressure  [torr] 
PAM-effect of arterial pressure in distending arteries, ratio to normal
PC-capillary pressure  [torr]
PCD-net pressure gradient across capillary membrane  [torr]
POP-pulmonary capillary pressure  [torr]
PDO-difference between muscle venous oxygen PO2 and normal venous oxygen PO2  [torr]
PFI-rate of transfer of fluid across pulmonary capillaries [l/min]
PFL-renal filtration pressure  [torr]
PGC-colloid osmotic pressure of tissue gel  [torr]
PGH-absorbency effect of gel caused by recoil of gel reticulum  [torr]
PGL-pressure gradient in lungs  [torr]
PGP-colloid osmotic pressure of tissue gel caused by entrapped protein  [torr]
PGR-colloid osmotic pressure of interstitial gel caused by Donnan equilibrium  [torr]
PIF-interstitial fluid pressure  [torr]
PLA-left atrial pressure  [torr]

PLD-pressure gradient to cause lymphatic flow  [torr]
PLF-pulmonary lymphatic flow  [torr]
PMO-muscle cell PO2  [torr]
POD-non-muscle venous PO2 minus normal value  [torr]
POK-sensitivity of rapid system of autoregulation
PON-sensitivity of intermediate autoregulation
POS-pulmonary interstitial fluid colloid osmotic pressure  [torr]
POT-non-muscle cell PO2  [torr]
POV-non-muscle venous PO2 [torr]
POY-sensitivity of red cell production
POZ-sensitivity of long-term autoregulation
PO2-oxygen deficit factor causing red cell production
PPA-pulmonary arterial pressure  [torr]
PPC-plasma colloid osmotic pressure  [torr]
PPD-rate of change of protein in pulmonary fluids
PPI-pulmonary interstitial fluid pressure  [torr]
PPN-rate of pulmonary capillary protein loss [g/min]
PPO-pulmonary lymph protein flow [g/min]
PPR-total protein in pulmonary fluids [g]
PRA-right atrial pressure  [torr]
PRM-pressure caused by compression of interstitial fluid gel reticulum [torr]
PRP-total plasma protein [g]
PTC-interstitial fluid colloid osmotic pressure  [torr]
PTS-solid tissue pressure  [torr]
PTT-total tissue pressure  [torr]
PGV-pressure from veins to right atrium  [torr]
PVG-venous pressure gradient  [torr]
PVO-muscle venous PO2  [torr]
PVS-average venous pressure  [torr]
QAO-blood flow in the systemic arterial system [l/min]

QLN-basic left ventricular output [l/min]
QLO-output of left ventricle [l/min]
QOM-total volume of oxygen in muscle cells [ml]
QO2-non-muscle total cellular oxygen [ml]
QPO-rate of blood flow into pulmonary veins and left atrium [l/min]
QRF-feedback effect of left ventricular function on right ventricular function
QRN-basic right ventricular output [l/min]
QRO-actual right ventricular output [l/min]
QVO-rate of blood flow from veins into right atrium [l/min]
RAM-basic vascular resistance of muscles [torr/l/min]
RAR-basic resistance of non-muscular and non-renal arteries [torr/l/min]
RBF-renal blood flow [l/min]
RC1-red cell production rate [l/min]
RC2-red cell destruction rate [l/min]
RCD-rate of change of red cell mass [l/min]
REK-percent of normal renal function
RFN-renal blood flow if kidney is not damaged [l/min]
RKC-rate factor for red cell destruction
RM0-rate of oxygen transport to muscle cells [ml/min]
RPA-pulmonary arterial resistance [torr/l/min]
RPT-pulmonary vascular resistance [torr/l/min]
RPV-pulmonary venous resistance [torr/l/min]
RR-renal resistance [torr/l/min]
RSM-vascular resistance in muscles [torr/l]
RSN-vascular resistance in non-muscle, n/minon-renal tissues [torr/l/min]
RVG-resistance from veins to right atrium [torr/l/min]
RVM-depressing effect on right ventricle of pulmonary arterial pressure
RVS-venous resistance [torr/l/min]
SR-intensity factor for stress relaxation
SRK-time constant for stress relaxation

STH-effect of tissue hypoxia on salt and water intake
SVO-stroke volume output [l]
TRR-tubular reabsorption rate [l/min]
TVD-rate of drinking [l/min]
VAS-volume in systemic arteries [l]
VB-blood volume [l]
VEC-extracellular fluid volume [l]
VG-volume of interstitial fluid gel [l]
VGD-rate of change of tissue gel volumes [l/min]
VIB-blood viscosity, ratio to that of water
VIC-cell volume [l]
VID-rate of fluid transfer between interstitial fluid and cells [l/min]
VIE-portion of blood viscosity caused by red blood cells
VIF-volume of free interstitial fluid [l]
VIM-blood viscosity (ratio to normal blood)
VLA-volume in left atrium [l]
VP-plasma volume [l]
VPA-volume in pulmonary arteries [l]
VPD-rate of change of plasma volume [l]
VPF-pulmonary free fluid volume [l]
VRA-right atrial volume [l]
VTC-rate of fluid transfer across systemic capillary membranes [l/min]
VTD-rate of volume change in total interstitial fluid [l/min]
VTL-rate of systemic lymph flow [l/min]
VTW-total body water [l]
VUD-rate of urinary output [l/min]
VV7-increased vascular volume caused by stress relaxation [l]
VVR-diminished vascular volume caused by sympathetic stimulation [l]
VVS-venous vascular volume [l]
Z8-time constant of autonomic response

AUK-time constant of baroreceptor adaptation
AUL-sensitivity of sympathetic control of vascular capacitance
AUM-sympathetic vasoconstrictor effect on arteries
AUN-effect of CNS ischemic reflex on auto-regulation
AUV-sensitivity control of autonomies on heart function
AUY-sensitivity of sympathetic control of veins
AUZ-overall sensitivity of autonomic control
AVE-sympathetic vasoconstrictor effect on veins
AlK-time constant of rapid autoregulation
A2K-time constant of intermediate autoregulation
A3K-time constant of long-term autoregulation
A4K-time constant for muscle local vascular response to metabolic activity
BFM-muscle blood flow [l/min]
BFN-blood flow in non-muscle, non-renal tissues [l/min]
CA-capacitance of systemic arteries [l/torr]
CCD-concentration gradient across cell membrane [mmol/l]
CHY-concentration of hyaluronic acid in tissue fluids [g/l]
CKE-extracellular potassium concentration [mmol/l]
CKI-intracellular potassium concentration [mmol/l]
CNA-extracellular sodium concentration [mmol/l]
CNE-sodium concentration abnormality causing third factor effect [mmo/l]
CPG-concentration of protein in tissue gel [g/l]
CPI-concentration of protein in free interstitial fluid [g/l]
CPN-concentration of protein in pulmonary fluids [g/l]
CPP-plasma protein concentration [g/l]
CV-venous capacitance [l/torr]
DAS-rate of volume increase of systemic arteries [l/min]
DFP-rate of increase in pulmonary free fluid [l/min]
DHM-rate of cardiac deterioration caused by hypoxia
DLA-rate of volume increase in pulmonary veins and left atrium [l/min]
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Figure 4. Circulatory dynamics - detailed representation 
of the central structure of the Guyton model in the original 
graphical notation (upper part of the figure) and in our Simu-
link implementation (bottom of the figure), which shows 
blood flows through aggregated parts of the circulatory sys-
tem, and action of the heart as a pump (Jiří Kofranek & Rusz, 
2010).
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modeling language requiring a commercial license (such 
as Matlab/Simulink by MathWorks), because the reader 
must be a licensee of the particular system to be able to 
just reproduce the model results. 

This is why considerable efforts have been made within 
the international PHYSIOME Project to create simulation 
languages appropriate for describing biomedical models 
and saving them in specific databases – model reposito-
ries. Publicly available tools for creating and launching 
models programmed in such languages were also created 
in this context.

So, for instance, the Virtual Cell project (http://vcell.
org) has been set up for visualization and simulation of 
the cell metabolism and cell signal paths. That project was 
developed by the Center for Cell Analysis & Modeling, at 
UConn Health, University of Connecticut (USA). Quite a 
large group of users exists now around that project. The 
Virtual Cell developmental environment is interlinked 
with a number of databases and with the list of diverse 
models. This environment works on the client-server 
principle .

The “Bio Tapestry” project of Caltech (California 
Institute of Technology), Eric Davidson’s laboratory, is 
designed for modeling regulatory gene networks (where 
expression of the various genes is blocked/activated by 
transcription factors which, in turn, result from the ex-
pression of other genes) (http://www.biotapestry.org). 
Regulatory gene networks look sort of like status au-
tomata (gene expression depending on the presence of the 
relevant transcription factors) – the gene expression may 
result in the formation of a protein, which can also be a 
transcription factor. A gene network editor and simulator 
can visualize the stepwise changes in the expression of 
the various genes and, based on a comparison with the 
experimental data, help explain the complex processes 
taking place particularly during embryonic development. 
Once again, this tool is interlinked with electronic model 
archives and has its own user community.

Two large global centers maintaining extensive physi-
ological model databases are currently involved in the 
PHYSIOME Project.

The first center (founded by Jim Bassingthwaighte) 
is administered by Washington University in Seattle 
and uses the specifically created JSim language for the 
model database(Butterworth, Jardine, Raymond, Neal, & 
Bassingthwaighte, 2013). A description of the language, 
installation sources and tutorials are available at: http://
www.physiome.org/jsim. 

The environment for the creation and launching of 
models written in JSim is based on Java, owing to which 
it can be easily installed on different platforms. This en-
vironment can be used to modify and launch models from 
an extensive model database: http://www.physiome.org/

jsim/models. 

The other large physiological system model database is 
maintained by the University of Auckland, New Zealand 
(https://unidirectory.auckland.ac.nz/profile/phun025). 
Petr Hunter, founder of the database, has built a top-rank-
ing workplace in New Zealand – halfway between Amer-
ica and Europe (http://www.abi.auckland.ac.nz/en.html).

This institution uses the CellML language (Cooling 
& Hunter, 2015; Cuellar et al., 2003; Garny et al., 2008; 
Lloyd, Lawson, Hunter, & Nielsen, 2008) to describe the 
models: http://www.cellml.org. The tools for browsing, 
creating and launching models in CellML are available at 
https://www.cellml.org/tools. A tool for converting from 
CellML to JSim also exists. OpenCell is a tool for CellML 
simulation: https://www.cellml.org/tools/opencell.A large 
database of models has been created in CellML and is 
available at: https://models.physiomeproject.org. The 
models were taken from the literature and reprogrammed 
into CellML (or JSim). Each model is accompanied by 
reasonably detailed documentation. A model download-
ed from the database in CellML can be simulated in the 
OpenCell environment. 

However, the development of specialized simulation 
tools is limited by the funding allocated for the physi-
ological research. 

6. Equation-based languages 
Both JSim and CellMl are causal, block-oriented lan-
guages. The same characteristics also applies to Simulink 
(from Mathworks), frequently used to model biomedical 
systems.

The main problem with block-oriented languages lies 
in the fact that a simulation network consisting of hierar-
chically connected blocks is a graphical representation of 
a chain of input value transformations to output values. 
This means that an exact algorithm for the calculation 
chain from the input values to the output values must be 
defined when creating a model.

As a consequence of the requirement of a fixed con-
nection direction from the inputs to the outputs, the con-
nection of the blocks reflects the calculation procedure 
rather than the structure of the modeled reality itself.

Where complex models are involved, deriving the cau-
sality of the calculation (i.e. deriving the algorithm for 
calculation of the output variables from the input vari-
ables) is by no means a straightforward task.

This problem is addressed by modern equation-based, 
or acausal, modeling languages. Unlike block-oriented 
languages, where the structure of the hierarchic block 
connections represents more the calculation method than 
the reality being modeled. the structure of the models in 
Modelica reflects the very structure of the reality mod-
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eled (compare Fig. 4 in block-oriented language and Fig. 
5 in Modelica). Owing to this, even complex models are 
adequately transparent and understandable in Modelica 
(Ježek, Kulhánek, Kalecký, & Kofránek, 2017). 

A model should be understandable not only to the de-
velopment team members but also to others. If only the 
authors understand their model, they will hardly obtain 
the necessary feedback or new impulses for their work 
from the scientific community.

This is of great importance with respect to the creation 
of complex integrative physiology models. When using 
block-oriented languages (be it Simulink or specifically 
created open-source languages for the documentation 
of biomedical models – JSim or CellML), the resulting 
complex program is not very comprehensible. It is largely 
only the authors who are able to understand their complex 
models. Modelica solves this problem efficiently, and in-
tegrative models of human physiology in Modelica have 
the potential for wider use within the scientific commu-
nity.

Nowadays, the principles of equation-based approach 
are further implemented also in other products. E.g. Sim-
Scape (Mathworks, MA, USA) software package extends 
the commonly used Matlab/Simulink environment with 
the multidomain physical system modeling capabilities, 
useful also for biomedical engineering (de Canete, Saz-

Orozco, Moreno-Boza, & Duran-Venegas, 2013; Ngo, 
Dahlmanns, Vollmer, Misgeld, & Leonhardt, 2018)

7.  Modelica – a language suitable for 
publishing and sharing biomedical 
models
Modelica, initially developed as an academic project in 
collaboration with small developmental companies at the 
universities in Lund and in Linköping, soon emerged as a 
highly effective and efficient tool for modeling complex 
models with potential application in mechanical engineer-
ing and in the automotive and aircraft industries. 

Owing to this, the development of Modelica eventu-
ally gained support from the commercial sector, but the 
language itself is developed by an independent nonprofit 
association (see www.modelica.org). The Modelica As-
sociation gathers a number of key commercial as well as 
academic players, which ensures the stability of the plat-
form and its relative independence on business decision 
of individual companies.

The speed at which this new simulation language 
spread to the various industries and was adopted by di-
verse commercial developmental environments is strik-
ing. Thanks to adoption by commercial sector, the lan-
guage and both proprietary and open-source tools are 
already mature enough to guarantee reliable modeling 
platform. Several commercial as well as noncommercial 
developmental tools using this language currently exist 
(see www.modelica.org/tools). 

Modelica users are therefore not confined to licensed 
commercial developmental tools: in fact, mature open-
source developmental tools for this language exist now 
(e.g. OpenModelica, available at openmodelica.org, and 
JModelica, available at jmodelica.org/). 

Thus, the effort spent on developing and maintaining 
own simulation platform is now unnecesary. Develop-
ment driven by a number of high-tech industry (automo-
tive, energy and aerospace) also guarantees small risk of 
stale development or platform discontinuation.

Modelica therefore appears to be a highly promising 
tool for publishing and sharing models. Some researchers 
have already adopted Modelica as their prefered model-
ing tool, e. g.(Heinke, Pereira, Leonhardt, & Walter, 2015; 
Maksuti, Bjällmark, & Broomé, 2015), even switched 
from the SimScape (de Canete, 2015), or use the general 
model exchange functional mockup interface, based on 
Modelica initiative (Gesenhues et al., 2017). The devel-
opers of the most complete physiological model Hum-
mod are also considering using Modelica implementation 
to make the model easier to maintain (R. Hester, personal 
communication, August 2018). However, the penetration 
of Modelica in physiological research is still not massive.

Figure 5. The same part of the model as in Figure 4, but 
implemented in Modelica. The model contains connected in-
stances of two pumps (of the right and left heart ventricle), 
elastic vascular compartments, and resistances. Upon its 
comparison with Fig. 3, it can be seen that the model struc-
ture in Simulink corresponds rather to a computational algo-
rithm, while the model structure in Modelica shows more of 
the structure itself of the modelled reality. Figure was adapt-
ed from (Kofránek, Mateják, & Privitzer, 2011).
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8. Application libraries for biomedical 
simulations in Modelica
The proliferation of Modelica was facilitated by the exis-
tence of libraries for the most diverse areas, which appre-
ciably simplify model formation for the given application 
domain. A model is set up by interconnecting instances of 
library components, like – figuratively speaking – build-
ings made of Lego bricks. 

The majority of current libraries serve physical and 
technological applications. New libraries had to be cre-
ated for models in the biomedical domain. 

This is why we have created Physiolibrary  (Marek 
Mateják et al., 2014), intended for model creation in phys-
iology (see http://physiolibrary.org). 

Physiology is a very progressive discipline, that exam-
ines how the living body works. And there is no surprise, 
that all processes in the human body are driven by physi-
cal laws of nature in several physical domain (see Tab 1 
and Tab 2). And it is a great challenge to join many old 
empirical experiments with the ‘new’ physical principles. 
We hope, that this library helps the unflagging effort of 
Physiologists to exactly describe the processes and in-
clude their hypothesis.  

The Physiolibrary contain basic physical laws in Hu-
man Physiology usable for cardiovascular circulation, 
metabolic processes, nutrients distributions, thermoregu-
lation, gases transport, electrolytes and acid-base regula-
tions, water distributions, hormonal or pharmacological 
regulations.

Chemical processes also have to be modeled in the bio- medical area, and so we created the Chemical library as 
well (Matejak, Tribula, Ježek, & Kofranek, 2015). 

Table 2. Analogies of selected Physiolibrary components 
based on connectors from Table 1 compared with electrical 
components in the Modelica Standard Library. To define the 
mathematical analogies in Table 2 we use the symbols e for 
effort (for connector nonflow variables) and f for flow (for 
connector flow variables). If there are more connectors in a 
component, they are differentiated by index. Unfortunately 
many elementary components in Physiolibrary do not have 
analogies through these domains. The special definitions 
in Physiolibrary include, for example, the components for 
chemical reaction, for hydrostatic pressure, for Henry’s solu-
bility of gas in liquid, for Donnan’s equilibrium of electro-
lytes on membrane etc. Table 1 and 2 were presented in (M. 
Mateják & Kofránek, 2015).

 find incompatible physical quantities in connections
or equations

 recalculate the physical units in dialogs or in outputs

 increase the precision of results and speed up the
calculations

Using physical quantities the compiler generates a warning 

or even an error every time a user tries to, for example, use

pressure in a place where the model expects volume.  

Setting parameters using dialogs during the

implementation of model can be greatly simplified by

specifying the physical units. Some Modelica environments 

can recalculate many non-SI units into expected SI unit

inside models. So, if the user uses any Physiolibrary type for

his parameter or his variable then these automatic unit

recalculations are available.

To ensure the compatibility of all Modelica libraries and
models all values must be calculated in SI units during the
simulation. This rule can generate strange dimensions for
some values. For example, the SI unit for volume is cubic
meter, but body compartments are typically measured in
milliliters. So the numbers used for calculation will be a
million times smaller than the physiologist normally uses.
However, this does not matter, because for these types
Physiolibrary defines a ‘nominal’ attribute, which translates
the tolerance level from SI units back to the typical nominal 
values used in physiology.

B. Connectors and Components

Each connector in Physiolibrary defines one physical
domain (see Table 1). As seen in Table 2, most of th
components have analogies throughout the domains. For
example, the resistor in electrical circuits has an analogy in the
chemical domain as diffusion, because the molar flow of a 
substance is driven by the concentration gradient in the same 
way an electric current is driven by the voltage gradient. To
define the mathematical analogies in Table 2 we use the
symbols e for effort (for connector nonflow variables) and f for 
flow (for connector flow variables). If there are mo
connectors in a component, they are differentiated by index.

Table 1, Physical connectors in my Physiolibrary compared with 

electrical connector in the Modelica Standard Library

connectors from Table 1 compared with electrical components in 

the Modelica Standard Library

Unfortunately many elementary components in 
Physiolibrary do not have analogies through these domains.
The special definitions in Physiolibrary include, for example,
the components for chemical reaction, for hydrostatic
pressure, for Henry’s solubility of gas in liquid, for Donnan’s
equilibrium of electrolytes on membrane etc.

For each connection of n connectors the Modelica 
compiler will automatically generate one equation as an 

Connector: flow variable nonflow variable

Chemical
molar flow

[mol.s-1]

concentration

[mol.m-3]

Hydraulic
volumetric flow

[m3.s-1]

pressure

[Pa]

Thermal
heat flow

[W]

temperature

[K]

Osmotic
volumetric flow

[m3.s-1]

osmolarity

[mol.m-3]

Population
change

[s-1]

size

[1]

Electrical
electric current

[A]

electric potential

[V]

Resistance Accumulation Stream 

f1=G*(e1 - e2) 

f1+f2=0 

�� 𝒇𝒇 �
a=C*e 

�� 𝒇𝒇 {�𝑭𝑭��, 𝑭𝑭� � �
�𝑭𝑭��, 𝑭𝑭� � �

f1+f2=0 

G..conductance C..capacitance F..stream flow 

Chemical 

diffusion 

Substance 
Solution flow 

Hydraulic 

resistance 

Elastic vessel 

not applicable 

Heat convection Heat 

Heated mass flow 

Semipermeable 

membrane 
Osmotic cell 

not applicable 

not applicable 

Population 

Growth, 

Differentiation 

Electrical 

resistor 

Electrical 

capacitor 

not applicable 
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Table 1. Physical connectors in Physiolibrary compared with 
electrical connector in the Modelica Standard Library. Each 
connector in Physiolibrary defines one physical domain. 
As seen in Table 2, most of the components have analogies 
throughout the domains. For example, the resistor in electri-
cal circuits has an analogy in the chemical domain as diffu-
sion, because the molar flow of a substance is driven by the 
concentration gradient in the same way an electric current is 
driven by the voltage gradient.

Connector: flow variable nonflow variable

Chemical molar flow 
[mol.s-1]

concentration 
[mol.m-3]

Hydraulic volumetric flow 
[m3.s-1]

pressure 
[Pa]

Thermal heat flow 
[W]

temperature 
[K]

Osmotic volumetric flow 
[m3.s-1]

osmolarity 
[mol.m-3]

Population change 
[s-1]

size 
[1]

Electrical electric current
[A]

 electric potential 
[V]

 find incompatible physical quantities in connections
or equations

 recalculate the physical units in dialogs or in outputs

 increase the precision of results and speed up the
calculations

Using physical quantities the compiler generates a warning 

or even an error every time a user tries to, for example, use

pressure in a place where the model expects volume.  

Setting parameters using dialogs during the

implementation of model can be greatly simplified by

specifying the physical units. Some Modelica environments 

can recalculate many non-SI units into expected SI unit

inside models. So, if the user uses any Physiolibrary type for

his parameter or his variable then these automatic unit

recalculations are available.

To ensure the compatibility of all Modelica libraries and
models all values must be calculated in SI units during the
simulation. This rule can generate strange dimensions for
some values. For example, the SI unit for volume is cubic
meter, but body compartments are typically measured in
milliliters. So the numbers used for calculation will be a
million times smaller than the physiologist normally uses.
However, this does not matter, because for these types
Physiolibrary defines a ‘nominal’ attribute, which translates
the tolerance level from SI units back to the typical nominal 
values used in physiology.

B. Connectors and Components

Each connector in Physiolibrary defines one physical
domain (see Table 1). As seen in Table 2, most of th
components have analogies throughout the domains. For
example, the resistor in electrical circuits has an analogy in the
chemical domain as diffusion, because the molar flow of a 
substance is driven by the concentration gradient in the same 
way an electric current is driven by the voltage gradient. To
define the mathematical analogies in Table 2 we use the
symbols e for effort (for connector nonflow variables) and f for 
flow (for connector flow variables). If there are mo
connectors in a component, they are differentiated by index.

Table 1, Physical connectors in my Physiolibrary compared with 

electrical connector in the Modelica Standard Library

connectors from Table 1 compared with electrical components in 

the Modelica Standard Library

Unfortunately many elementary components in 
Physiolibrary do not have analogies through these domains.
The special definitions in Physiolibrary include, for example,
the components for chemical reaction, for hydrostatic
pressure, for Henry’s solubility of gas in liquid, for Donnan’s
equilibrium of electrolytes on membrane etc.

For each connection of n connectors the Modelica 
compiler will automatically generate one equation as an 

Connector: flow variable nonflow variable

Chemical
molar flow

[mol.s-1]

concentration

[mol.m-3]

Hydraulic
volumetric flow

[m3.s-1]

pressure

[Pa]

Thermal
heat flow

[W]

temperature

[K]

Osmotic
volumetric flow

[m3.s-1]

osmolarity

[mol.m-3]

Population
change

[s-1]

size

[1]

Electrical
electric current

[A]

electric potential

[V]
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Those libraries are a result of our many years’ experi-
ence in the implementation of extensive hierarchical mod-
els of human physiology in Modelica (Ježek et al., 2017; 
Jiri Kofranek, Matejak, & Privitzer, 2011), the HumMod 
model in particular.

The HumMod model, set up in international collabora-
tion by a group of collaborators and disciples of A. Guy-
ton at the Mississippi University Medical Center, USA, 
(R. Hester, Brown, Husband, & Iliescu, 2011; R. L. Hes-
ter, Coleman, & Summers, 2008) is probably the most 
extensive existing model of integrated physiological sys-
tems of human physiology. The authors do not keep the 
structure secret: the model source text (containing over 
5,000 variables) can be downloaded from the project web 
pages: http://hummod.org. The source text is written in a 
specific XML markup language. The whole mathematical 
model is offered as an open-source tool. The user is free to 
download both the source text and the translator into their 
computer from the web page and to launch the model on 
their own computer (Fig. 6 and 7). The user is in a posi-
tion to modify the model to suit their purpose. A problem 
is in the fact that the XML source texts of the entire model 
are written in thousands of files located in hundreds of 
folders, and gaining insight into the mathematical relation 
by browsing through thousands of interlinked XML files 
is very difficult.

It appears that the comprehensibility of the descrip-
tions of complex integrative models is one of the factors 
limiting their adoption by the scientific community. If the 
creators are the only ones to understand their model, any 
possibility of technical communication with other scien-
tists is considerably limited. And so is the potential for 
a wider use within the broad scientific community. So, 
the development of methodologies that will make the de-
scription of the structure of complex hierarchical models 
so clear that a wide group of users can understand it is 
gaining in importance.

Specific browsers allowing the relations in the model 
to be browsed have been created in order to facilitate un-
derstanding of the HumMod model (Wu, Chen, Pruett, & 
Hester, 2013). Even so, the equations in the model and 
their interrelations are rather difficult for the user to un-
derstand. One of the ways to make understanding com-
plex hierarchic models easier is to use the Modelica lan-
guage. This is why we decided to re-implement the entire 
complex model of the US authors in Modelica.

Model re-implementation in Modelica makes the mod-
el structure much clearer (see Fig. 8), the source code re-
sembling hierarchic physiological schemes. Making the 
model clearer also helped detect some errors in the initial 
US implementation of the HumMod model. We modified 
HumMod and extended it mainly in the area of model-
ing blood gas transfer and homeostasis of the inner en-
vironment, the acid-base equilibrium in particular (Jiri 
Kofranek et al., 2011).

Our version of the HumMod model, called Physi-
omodel, is being developed as an open-source tool. The 
model source texts (i.e. equations, values of all constants, 
etc.), which constitute a formalized representation of the 

Figure 7. The user can compile and run the HumMod model. 
Using a widely branched menu, hundreds of variables can be 
monitored during simulation experiments.

Figure 6. HumMod simulator has been distributed with a 
compiler, loader and the source code written in thousands of 
XML files.

Compiler and loader 
for HumMod model

Source code of 
HumMod
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Cardiovascular System

Systemic CirculationPeripheral Circulation

HumMod Main

Kidney Circulation Splanchnic Circulation

Figure 8. Illustration of a part of the source text of our HumMod implementation in Modelica. The source text resembles 
hierarchical physiological schemes. Image adapted from http://www.physiomodel.org/
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8 Conclusions 
Let us sum up the factors owing to which Modelica is a 
language suitable for publishing and sharing biomedical 
models:

1. Modelica is a modeling language, not a proprietary 
product owned by a commercial company (such as, 
e.g. Mathworks’ Matlab and Simulink).

2. Publicly accessible noncommercial developmental 
tools (such as OpenModelica and JModelica) exist 
for Modelica and are mature and reliable enough, 
the development is driven by well funded indus-
tries.

3. Modelica includes application libraries facilitating 
biomedical system modeling.

4. The model structure in the acausal Modelica lan-
guage is clear, reflecting more the structure of the 
original modeled than that of the calculation and 
enabling extensive hierarchic models to be set up.

5. Modelica may be broadly used in a number of ap-
plication domains. Further Modelica developments 
are aimed at satisfying the requirements of the in-
dustries and are not dependent on grant funds from 
the PHYSIOME Project.
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