
Control Description Language

Michael Wetter Milica Grahovac Jianjun Hu

Lawrence Berkeley National Laboratory
Energy Technologies Area

Building Technology and Urban Systems Division
Berkeley, CA, USA

{mwetter,mgrahovac,jianjunhu}@lbl.gov

Abstract
Properly designed and implemented building control se-
quences can significantly reduce energy consumption.
However, there is currently no process with supporting
tools that allows the assessment of the performance of dif-
ferent control sequences, export the control sequences in
a vendor-neutral format for cost estimation and for im-
plementation on a building automation system through
machine-to-machine translation, and reuse the sequences
for verification during commissioning.

This paper describes a Control Description Language
(CDL) that we developed to create such a process. For
CDL, we selected a subset of Modelica that allows a con-
venient representation of control sequences, simulation of
the control sequence coupled to a building energy model,
and development of translators from CDL to building au-
tomation systems. To aid in the development of such
translators, we created a translator from CDL to a JSON
intermediate format. In future work, we seek to work
with building control providers to develop translators from
CDL to commercial building automation systems.

Through a case study, we show that CDL suffices
for simulation-based performance assessment of two
ASHRAE-published control sequences for a variable air
volume flow system of an office building. Moreover, the
case study showed that merely due to differences in the
control sequences, annual HVAC energy use was reduced
by 30%. This difference is larger than the accuracy re-
quired when comparing different HVAC systems, thereby
questioning the current practice of idealizing control se-
quences in building energy simulations, and demonstrat-
ing the importance of ensuring that the control sequence
used during design simulations corresponds to the control
sequence that will be implemented in the real building.
Keywords: controls, buildings, HVAC

1 Introduction
The building control industry has a standard for data com-
munication called BACNet that is supported by all ma-
jor control vendors (ASHRAE, 2004). However, there is
no standard for expressing the control logic, despite the
situation that control is often not implemented as speci-

fied during design, and the savings potential due to bet-
ter control sequences is significant but not widely real-
ized. The purpose of this paper is to describe a first im-
plementation of a language with the intent to develop a
standard for expressing building control sequences. This
standard should support the mechanical designer in devel-
oping and testing control sequences within building en-
ergy simulations, and exporting these sequences to cre-
ate unambiguous specifications for the control provider. It
should support control providers in cost-estimation and in
implementation of the control sequence on their control
platform through machine-to-machine translation, and it
should support the commissioning agent when verifying
that the implemented control sequence meets the original
specification.

It is generally recognized that properly designed and
implemented control sequences can reduce energy con-
sumption around 20% to 30% (Fernandez et al., 2017).
Implementation errors in control sequences are in particu-
lar common in large buildings as they typically have built-
up heating, ventilation and air-conditioning (HVAC) sys-
tems that require custom control sequences. The need
for correct design and implementation of energy-saving
and load-shifting control sequences is increasing because
more stringent demands on energy savings and energy
flexibility for the grid leads to increased complexity of
control sequences.

For built-up HVAC systems, the current process is gen-
erally as follows: The mechanical engineer writes the con-
trol sequence in English language. This typically involves
copying and adapting a part of the control sequence from
similar projects. The document is then sent to a control
provider. The control provider uses this English language
description for cost estimation, and later for implementa-
tion. The control provider typically implements the con-
trol sequence by combining parts of sequences from pre-
vious projects that appear to have a similar controls in-
tent. During commissioning, the commissioning agent
conducts a limited number of tests to verify that the oper-
ation conforms to the commissioning agents’ understand-
ing of the control sequence.

The quality of the English language descriptions that
are underlying this process varies largely. Our observation

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

17

Designer Control provider Commissioning agent

submit and deliver
controls through
code generation

export
specification &
verification tests

import sequence from a
library, configure
and test it, connected to
an energy model

Vout

dT

verify against
design specification

failed

untested

passed
dT

Vout

dT

Vout

Figure 1. Overview of process for control sequence design, export of a specification, implementation on a control platform and
verification against the specification.

is that best-in-class sequence specifications are often am-
biguous, leave considerable room for interpretation, and
may miss part of the sequence. This is not surprising be-
cause the control sequences are rather complex, because
the English language representation aims to convey the
control intent rather than how to realize it, and the me-
chanical engineer who wrote the control sequences is nei-
ther trained in, nor reimbursed for, the implementation of
control sequences. As a consequence, such control spec-
ifications are not executable and hence do not allow for
formal testing.

To realize the energy savings potential of building con-
trol sequences, we are working on developing tools and a
process that will allow a mechanical engineer to select and
adapt a control sequence from a library of sequences, con-
nect it to a simulation model of the HVAC and building,
test the performance of the control sequence coupled to
the simulation model of the HVAC system and the build-
ing, export the control sequence in a control-vendor neu-
tral format that allows control providers to conduct cost
estimates and ultimately implement the sequence on their
control platform through machine-to-machine translation.
Figure 1 shows an overview of such a design flow.

To enable such a design flow, we are developing a lan-
guage that we call Control Description Language (CDL),
whose description is the main subject of this paper. We are
also working on a project called "Spawn of EnergyPlus"
that redesign EnergyPlus so that it supports this process
(see https://lbl-srg.github.io/soep/).

CDL needs to satisfy these high level requirements:
• It must be independent of any control-vendor specific

platform.
• It must be declarative to facilitate its translation to

other languages.
• It must be possible to simulate controls expressed in

the language within an annual building energy simu-
lation.

• It must be deterministic, e.g., for given inputs and
states, different implementations of sequences ex-
pressed must yield the same output and state updates
(within the precision of ordinary differential equation
solvers that may integrate PID controllers).

• It should be possible to translate the sequence to a

variety of building control platforms.
• It must allow identification of cyclic graphs that

would require iterative solutions and hence are not
suited for implementation in building automation
systems.

Related work in our application domain includes
the following: Husaunndee et al. (1997) developed a
MATLAB/Simulink-based toolbox of models of HVAC
components and plants for the design and test of con-
trol systems called SIMBAD. SIMBAD has been used
for testing and emulation of building control sequences,
and is commercially distributed by CSTB France. Bon-
vini and Leva (2012) developed an industrial control li-
brary in Modelica that contains a variety of blocks with
the intent to allow modelers to replicate industrial control
sequences, including vendor-specific peculiarities. Yang
et al. (2010) developed a tool chain that maps Simulink
and Modelica models into an intermediate format, and
then refined it for implementation in distributed con-
trollers. Our approach borrows from their methodology
in that we also use an intermediate format and restrict the
language to make such a translation possible. Schneider
et al. (2017) implemented a Modelica library with stan-
dardized control functions for building automation. They
use control functions from VDI 3813-2:2011 and state
graph representations from VDI 3814-6:2009. Our ap-
proach differs from their work as they document the con-
trol sequence using Unified Modeling Language (UML)
class and activity diagrams. Also, they used semantic
control connectors, which they subsequently removed for
version 1.0.0. To generate English language representa-
tions together with a process diagram, Automated Logic
Control developed CtrlSpecBuilder (ALC, 2018). Ctrl-
SpecBuilder allows mechanical engineers to select the de-
sired control functionality by answering a set of questions.
The software then outputs a Microsoft Word document
that specifies the control sequence in a vendor-neutral way
together with a process diagram. Our approach differs
from Bonvini and Leva (2012), Yang et al. (2010) and
Schneider et al. (2017) in that we use elementary control
blocks that form a basic library of control functions, and
simple composition rules that we believe suffice for com-
posing building control sequences.

As of this writing, we implemented CDL, used it

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417
18

to implement control sequences that were developed
by a project conducted for the American Society of
Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE), tested these sequences in simulation, and de-
veloped an export program that converts the CDL repre-
sentation to a JSON and an English language represen-
tation. Work in progress and not reported in this paper
includes the use of CDL to compare a simulated versus an
actual building control system response. Also ongoing are
discussions with control providers to see if they can pro-
totype a translator from CDL to their commercial product
line. Based on this feedback, the CDL language may fur-
ther evolve.

2 Discussion of the Target Platform
To put this work in context, one has to recognize that
building control systems largely vary in how they im-
plement control sequences. Commercial products range
from textual languages that combine the functionality of
FORTRAN with programming structures similar to BA-
SIC (Siemens, 2000) to graphical block-diagram lan-
guages where blocks can be used from a library and new
blocks can be provided in a component-oriented program-
ming language similar to Java or C# (Thomas, 2016). Fur-
thermore, different building control systems use different
native data types; some allow boolean signals to take on
true or false only, while others also allow the value of
null. Also, control sequences often contain proprietary
algorithms, such as the computation of the start time for a
warm-up after a room temperature setback. Furthermore,
specification for the programming languages are hard if
not impossible to find for many systems. Thus, the space
of target platforms to which our language will need to
be translated is heterogeneous and often proprietary. We
therefore only intent to translate CDL to building automa-
tion systems, but do not attempt to translate a particular
control implementation to CDL.

Control providers typically also include blocks for com-
munication with hardware, and for sending messages to
the operator, such as through logging, sending email, or
displaying a value in an operator workstation. For ex-
ample, Contemporary Controls’ Sedona platform contains
a block called CControls_BASR8M_Platform that
advises the programmer how much usable memory is
available for application programming, a block to mon-
itor the execution time of a Sedona logic (ScanTim)
and blocks to communicate with BACNet or with web
pages (Contemporary Controls, 2017). CDL does not at-
tempt to support such specialized blocks. Rather, the in-
tention of CDL is to support the declaration of the control
logic in a vendor neutral way. This is also required be-
cause during the design of a building, the control provider
may not yet be known and thus the specification should
be independent of any control product line. Code that pro-
vides input/output functionality with hardware or web ser-
vices will need to be added when a CDL-conformant con-

trol sequence specification is implemented on a particular
control platform.

3 CDL Language
We will now describe the Control Description Language
(CDL). To develop CDL, we identified a small subset
of basic control functionalities that will need to be pro-
vided, together with rules that prescribe how to compose
sequences and rules that prescribe the mathematical be-
havior of these basic control functionalities and compos-
ite sequences. Specifically, we formulated CDL as a block
diagram language that consists of the following elements:

• Permissible data types.
• Elementary control blocks, each of which encapsu-

lates an elementary calculation performed on a sig-
nal in a control sequence, such as a block that adds
two signals and outputs the sum.

• Input and output connectors through which these
blocks receive values and send values.

• Syntax to specify
– how to instantiate control blocks and assign

values to parameters, such as a proportional
gain,

– how to connect inputs of blocks to outputs of
other blocks,

– how to document blocks,
– how to add annotations, such as for graphical

rendering of blocks and their connections, and
– how to specify composite blocks.

• A model of computation that describes when blocks
are executed and when outputs are assigned to inputs.

The following sections further explain these elements.

3.1 Syntax
In order to use CDL with building energy simulation pro-
grams, and to not invent yet another language with a new
syntax, we selected a subset of the Modelica 3.3 specifi-
cation for the implementation of CDL (Modelica Associ-
ation, 2012). The selected subset is needed to instantiate
classes, assign parameters, connect objects and document
classes. This subset is fully compatible with Modelica,
e.g., no other information that violates the Modelica Stan-
dard has been added, thereby allowing users to view, mod-
ify and simulate CDL-conformant control sequences with
any Modelica-compliant simulation environment.

To simplify the support of CDL for tools and con-
trol systems, the following Modelica keywords are not
supported in CDL: extends, redeclare and con-
strainedby, inner and outer.

Also, the following Modelica language features are not
supported in CDL:

1. Clocks, as the use of clocks would complicate trans-
lation to building automation systems that often dis-
tribute the control sequences to different field de-
vices.

2. algorithm sections, because the elementary
building blocks are black-box models as far as CDL

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

19

is concerned and thus there is no need to support al-
gorithm sections.

3. initial equation and initial algo-
rithm sections, because these are not needed when
composing sequences using the elementary building
blocks explained in Section 3.4.

3.2 Permissible Data Types
The basic data types are, in addition to the elementary
building blocks, parameters of type Real, Integer,
Boolean, String, and enumeration. All specifi-
cations in CDL are declarations of blocks, instances of
blocks, or declarations of type parameter, constant,
or enumeration. Variables are not allowed.1 The dec-
laration of such types is identical to the declaration in
Modelica.

Each of these data types, including the elemen-
tary building blocks, can be a single instance or one-
dimensional array. Array indices shall be of type In-
teger only. The first element of an array has index 1.
An array of size 0 is an empty array. enumeration or
Boolean data types are not permitted as array indices.

3.3 Encapsulation of Functionality
All computations are encapsulated in a block. Blocks
expose parameters, and they expose inputs and outputs us-
ing connectors.

Blocks are either elementary building blocks (see Sec-
tion 3.4) or composite blocks (see Section 3.9).

3.4 Elementary Building Blocks
The CDL library contains elementary building blocks that
are used to compose control sequences. The functionality
of elementary building blocks, but not their implementa-
tion, is part of the CDL specification. Thus, in the most
general form, elementary building blocks can be consid-
ered as functions that for given parameters p, time t and
internal state x(t), map inputs u(t) to new values for the
outputs y(t) and states x′(t), e.g.,

(p, t,u(t),x(t)) �→ (y(t),x′(t)). (1)

Control providers who support CDL need to be able to
implement the same functionality as is provided by the el-
ementary CDL blocks. CDL implementations are allowed
to use a different implementation of the elementary build-
ing blocks, because the implementation is language spe-
cific. However, implementations shall have the same in-
puts, outputs and parameters, and they shall compute the
same response for the same value of inputs and state vari-
ables.

Users are not allowed to add new elementary building
blocks. Rather, users can use them to implement compos-
ite blocks.

The elementary building blocks are implemented in
subpackages of the package CDL. For each elementary

1Variables are used in the elementary building blocks, but these can
only be used as inputs to other blocks if they are declared as an output.

Figure 2. Screenshot of CDL library.

building block, there is an example that demonstrates its
use.

An actual implementation of an elementary building
block looks as follows, where we omitted the annotations
that are used for graphical rendering:

block AddParameter
"Output the sum of an input plus a

parameter"
parameter Real p "Value to be added";
parameter Real k "Gain of input";
Interfaces.RealInput u

"Connector of Real input signal";
Interfaces.RealOutput y

"Connector of Real output signal";
equation
y = k*u + p;
annotation(Documentation(info("
<html>
<p>
Block that outputs ... [omitted]
</p>
</html>"));

end AddParameter;

3.5 Instantiation
The instantiation of blocks is identical to Modelica. In the
assignment of parameters, calculations are allowed.
For example, a hysteresis block could be configured as
follows

parameter Real pRel(unit="Pa") = 50
"Pressure difference across damper";

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417

20

CDL.Logical.Hysteresis hys(
uLow = pRel-25,
uHigh = pRel+25)
"Hysteresis for fan control";

Instances can conditionally be removed by using an if
clause. This allows, for instance, to have a single im-
plementation of an economizer enable/disable control se-
quence that can be configured to optionally take the spe-
cific enthalpy as an input signal. An example code snippet
is

parameter Boolean use_enthalpy = true
"Set to true to evaluate outdoor air

enthalpy in addition to temperature"
;

CDL.Interfaces.RealInput hOut
if use_enthalpy
"Outdoor air enthalpy";

3.6 Connectors
Blocks expose their inputs and outputs through input
and output connectors. The permissible connectors are
implemented in the package CDL.Interfaces, and
are BooleanInput, BooleanOutput, DayType-
Input, DayTypeOutput, IntegerInput, Inte-
gerOutput, RealInput and RealOutput. Day-
Type is an enumeration for working day, non-
working day and holiday.

3.7 Connections
Connections connect input to output connectors. For
scalar connectors, each input connector of a block needs to
be connected to exactly one output connector of a block.
For vectorized connectors, each (element of an) input con-
nector needs to be connected to exactly one (element of
an) output connector. Vectorized input connectors can be
connected to vectorized output connectors using one con-
nection statement, provided that they have the same num-
ber of elements.

Connections are listed after the instantiation of the
blocks in an equation section. The syntax is

connect(port_a, port_b) annotation(...);

where annotation(...) is used to declare the
graphical rendering of the connection (see Section 3.8).
The order of the connections and the order of the argu-
ments in the connect statement does not matter.

Signals shall be connected using a connect state-
ment; assigning the value of a signal in the instantiation
of the output connector is not allowed.

3.8 Annotations
Annotations follow the same rules as described in the fol-
lowing sections of the Modelica 3.3 Specification:
• §18.2 Annotations for Documentation.
• §18.6 Annotations for Graphical Objects, with the

exception of
– §18.6.7 User input, and

k=k

gain

minValue

min()

yMax

e

y

Figure 3. Example of a composite control block that outputs
y = min(k e,ymax), where k is a parameter.

• §18.8 Annotations for Version Handling.
Hence, for CDL, annotations are primarily used to graph-
ically visualize block layouts and input and output signal
connections, and to declare vendor annotations (see § 18.1
in Modelica 3.3 Specification).

3.9 Composite Blocks
CDL allows building composite blocks such as shown in
Figure 3. Composite blocks are needed to preserve group-
ing of control blocks and their connections, and are needed
for hierarchical composition of control sequences.

Composite blocks can contain other composite blocks.
Each composite block shall be stored on the file system
under the name of the composite block with the file exten-
sion .mo, and with each package name being a directory.
The name shall be an allowed Modelica class name. Ap-
pendix A shows how to declare the block shown in Fig-
ure 3.

3.10 Model of Computation
CDL uses the synchronous data flow principle and the sin-
gle assignment rule, which are defined below. The defini-
tion is adopted from and consistent with the Modelica 3.3
Specification § 8.4, and is as follows:

1. All variables keep their actual values until these val-
ues are explicitly changed. Variable values can be
accessed at any time instant.

2. Computation and communication at an event instant
does not take time.

3. Every input connector shall be connected to exactly
one output connector.

In addition, the dependency graph from inputs to out-
puts that directly depend on inputs shall be directed and
acyclic. I.e., connections that form an algebraic loop are
not allowed.

3.11 Inferred Properties
CDL has sufficient information for tools that process CDL
to generate for example point lists that list all analog tem-
perature sensors, or to verify that a pressure control sig-
nal is not connected to a temperature input of a controller.
Some, but not all, of this information can be inferred from
the CDL language described above.

Note that none of this information affects the computa-
tion of a control signal. Rather, it can be used for example

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

21

to facilitate the implementation of cost estimation tools,
or to detect incorrect connections between outputs and in-
puts.

To avoid that signals with physically incompatible
quantities are connected, tools that parse CDL can infer
the physical quantities from the unit and quantity at-
tributes.

Therefore, tools that process CDL can infer the follow-
ing information:

• Numerical value: Binary value (which in CDL is
represented by a Boolean data type), analog value
(which in CDL is represented by a Real data type)
mode (which in CDL is presented by an Integer
data type or an enumeration, which allow for exam-
ple encoding of the ASHRAE Guideline 36 Freeze
Protection which has 4 stages).

• Source: Hardware point or software point.
• Quantity: such as Temperature, Pressure, Humidity

or Speed.
• Unit: Unit and preferred display unit. The use of

display unit allows for example a control vendor to
use the same sequences in North America displaying
IP units, and in the rest of the world displaying SI
units.

4 Control Sequence Implementation

16

Implement sequences with CDL
Organized sequences according to Guideline 36 structure

Figure 4. Overview of the ASHRAE Guideline 36 package im-
plemented in the Modelica Buildings library 5.0.0

To test CDL, we used it to implement control
sequences for variable air volume flow systems as
specified in ASHRAE Guideline 36, public review draft
1 (ASHRAE, 2016). Figure 4 shows an overview of
the package structure. The implementation is structured
hierarchically into packages for air handler units, into
constants that indicate operation modes, into generic
sequences such as for a trim and respond logic, and into
sequences for terminal units. For every sequence, there is
a validation package that illustrates its use.

For implementation of these sequences, we had to make
the following main design decisions:

For the PID controller, we used the same implemen-
tation as is used in the Modelica Buildings library. This
implementation is identical to the one from the Modelica
Standard Library, except that it adds an option to reset the
control output when a boolean input switches to true.
This controller is in the standard form

y(t) = k
(

e(t)+
1
Ti

∫
e(s)ds+Td

de(t)
dt

)
, (2)

where we omitted for simplicity features of the imple-
mented controller such as anti-windup, and where y(t) is
the control signal, e(t) = us(t)−um(t) is the control error,
with us(t) being the set point and um(t) being the mea-
sured quantity, k is the gain, Ti is the time constant of the
integral term and Td is the time constant of the derivative
term. Note that the units of k are the inverse of the units of
the control error, while the units of Ti and Td are seconds.

As the units of flow rates and pressure can vary between
orders of magnitude, for example depending on whether
cfm, m3/s or m3/h are used for flow measurements, we
decided to normalize the control error as follows: For tem-
peratures, no normalization is used, and the units of k are
1/Kelvin. No normalization is used because 1 Kelvin is
1.8 Fahrenheit, and hence these are of the same order of
magnitude. For air flow rate control, the design flow rate is
used to normalize the control error, and hence k is unitless.
This also allows for using the same control gain for flows
of different magnitudes, for example for a VAV box of a
large and a small room, provided the rooms have similar
transient response. For pressure control, the pressure dif-
ference is used to normalize the control error, and hence k
is unitless.

Guideline 36 is specific as to where a P or a PI controller
should be used. We used these recommendations as the
default control configuration. However, all controllers can
be configured as P, PI or PID controller. This allows for
example to temporarily configure a PI controller as a P
controller during the tuning process.

As Guideline 36 is written to convey the control intent
rather than the actual implementation, it does not discuss
how to avoid chattering of control due to sensor noise or
numerical integration error. Therefore, for the part of the
control sequences that use continuous time semantics, we
added either hysteresis blocks or timers wherever the con-
trol or measurement signal is used as an input to a switch.2

5 Export of Control Sequences
We are currently developing a parser that exports CDL-
conformant control sequences for the following use cases:

1. For human-readable documentation, the parser con-
verts the sequences to html, similar to how Modelica
tools generate html documentation.

2During the initial testing of the sequences, we indeed observed
chattering and non-convergence of the solver as we missed a few of
these switches.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417
22

k=k

gain

minValue

min()

yMax

e

y

Figure 5. Graphical rendering of a the composite control block
shown in Appendix A.

2. For further translation to control product lines, the
parser converts the sequences to two JSON formats:
One is an intermediate format that is close to the
abstract syntax of Modelica, the other is generated
by simplifying the former for easier processing by
downstream applications. The latter representation
is also used to generate html documentation of the
control sequence.

The parser is currently being developed at https://
github.com/lbl-srg/modelica-json. As an
illustrative example, consider the composite block shown
graphically in Figure 5 and textually using the CDL in Ap-
pendix A. The parser can export this specification to the
JSON format shown in Appendix B.

The parser is implemented using ANTLR (ANother
Tool for Language Recognition, http://www.antlr.
org/) which converts CDL to a JSON format, which
then is further simplified using JavaScript. For the html
output, we use the mustache templating engine (https:
//github.com/janl/mustache.js).

6 Case Study
To test the suitability of CDL for simulation, we con-
ducted closed loop simulations of multizone VAV se-
quences coupled to a whole building energy model. We
will now summarize the experiment, and refer the reader
for a more detailed description to Wetter et al. (2018)
and http://obc.lbl.gov/. For the simulations,
we used a model of one floor of the new construction
medium office building for Chicago, IL, as described in
the set of DOE Commercial Building Benchmarks (Deru
et al., 2011). For all simulations, we used the same
building and the same variable air volume flow sys-
tem, but with two different control sequences. One se-
quence is based on the above described ASHRAE Guide-
line 36, whereas the other is the control sequence VAV
2A2-21232 of the Sequences of Operation for Com-
mon HVAC Systems (ASHRAE, 2006). All models
are available in the Modelica Buildings library (Wet-
ter et al., 2014), version 5.0.0, in the package Build-
ings.Examples.VAVReheat.

It turns out that changing the control sequence from
VAV 2A2-21232 to the one published in Guideline 36
saves around 30% annual site HVAC energy under com-

parable thermal comfort. These are significant savings
that can be achieved through software only, without the
need for additional hardware or equipment. Moreover,
the magnitude of these savings also questions how con-
trols are typically represented in building energy simula-
tion programs. Building energy simulation programs typ-
ically use idealized control sequences. These programs
may then be used to compare the energy performance of
different HVAC systems, such as a VAV system versus a
radiant cooling system. However, such differences fre-
quently are also in the order of 30%. Thus, to compare the
energy performance of HVAC systems, control sequences
must be represented adequately in the simulation, and the
authors question the validity of the control idealizations
that are commonly used in building energy simulation. If
the variability due to controls is in the order of 30%, one
cannot discern what apparent savings can be attributed
to the change in HVAC system. Moreover, a process is
needed that ensures that the control sequences will be im-
plemented correctly and thus savings identified during de-
sign are realized during operation.

7 Conclusion
With the implementation of the Guideline 36 sequences
and the case study, we have shown that our subset of the
Modelica language that we identified for CDL suffices
to implement control sequences for simulation. Ongoing
work attempts to put in place a translator to a commer-
cially available building automation system to see if unex-
pected issues arise that may require changes to CDL.

Our case study indicated that annual HVAC energy use
can be reduced by 30% simply through the use of more
sophisticated conventional control sequences. These se-
quences are however more complicated to specify and im-
plement, and therefore we believe that for their proper use
in design and actual operation of buildings, a process that
allows their use in design, their (semi-automatic) transla-
tion to control product lines, and their verification relative
to design specification is essential.

A key language issue that we selected to not support
in the first version of CDL are state machines, for ex-
ample as implemented in the Modelica.StateGraph
package of the Modelica Standard Library 3.2 or as de-
scribed in the Chapter 17 in the Modelica Language Def-
inition (Modelica Association, 2012). The use of state
machines would have made the implementation of control
sequences considerably easier for blocks whose output is
computed using various time delays, interlocks and modes
of operation, which are frequently used in Guideline 36.
As state machines are not universally supported in build-
ing automation systems, and as there are various flavors of
state machines, we decided to currently not support them.

Selecting a subset of Modelica, in particular not sup-
porting replaceable classes and multiple inheritance, con-
siderably simplified the development of a translator from
CDL to JSON. We believe that this also makes it easier for

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

23

control providers to support CDL.
At present, CDL supports conventional control se-

quences. In the future, CDL will also need to support
control sequences that use Model Predictive Control or
other advanced mathematical methods. How to provide
blocks that can interface with such methods, or how to
add vendor-specific packages that provide such advanced
methods that are typically proprietary will be subject of
future work.

8 Acknowledgment
This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231, and the Cali-
fornia Energy Commission’s Electric Program Investment
Charge (EPIC) Program.

References
ALC, 2018. CtrlSpecBuilder, 2018. URL https://www.
ctrlspecbuilder.com.

ASHRAE. ANSI/ASHRAE Standard 135-2004, BACnet, a data
communication protocol for building automation and control
networks, 2004. ISSN 1041-2336.

ASHRAE. Sequences of Operation for Common HVAC Systems.
ASHRAE, Atlanta, GA, 2006.

ASHRAE, 2016. ASHRAE Guideline 36P, High Performance
Sequences of Operation for HVAC systems, First Public Re-
view Draft. ASHRAE, June 2016. URL http://gpc36.
savemyenergy.com/public-files.

Marco Bonvini and Alberto Leva. A modelica library for in-
dustrial control systems. In Proc. of the 9-th Int. Modelica
Conf., pages 477–484, Munich, Germany, September 2012.
Modelica Association. doi:DOI:10.3384/ecp12076477.

Contemporary Controls, 2017. Sedona Open Control –
Reference Manual. Contemporary Controls, September
2017. URL https://www.ccontrols.com/pdf/
RM-SEDONA00.pdf.

Michael Deru, Kristin Field, Daniel Studer, Kyle Benne,
Brent Griffith, Paul Torcellini, Bing Liu, Mark Halverson,
Dave Winiarski, Michael Rosenberg, Mehry Yazdanian, Joe
Huang, and Drury Crawley. U.S. Department of Energy com-
mercial reference building models of the national building
stock. Technical Report NREL/TP-5500-46861, National Re-
newables Energy Laboratory, Golden, CO, February 2011.

Nicholas E.P. Fernandez, Srinivas Katipamula, Weimin Wang,
YuLong Xie, Mingjie Zhao, and Charles D. Corbin. Impacts
of commercial building controls on energy savings and peak
load reduction. Technical Report 25985, PNNL, 5 2017.

A. Husaunndee, R. Lahrech, H. Vaezi-Nejad, and J.C. Visier.
Simbad: A simulation toolbox for the design and test of
HVAC control systems. In Jean Jacques Roux and Monika
Woloszyn, editors, Proc. of the 5-th IBPSA Conf., pages
269–276, 1997. URL www.ibpsa.org/proceedings/
bs1997/bs97_p022.pdf.

Modelica Association, 2012. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling, Lan-
guage Specification, Version 3.3. Modelica Associa-
tion, May 2012. URL https://www.modelica.org/
documents/ModelicaSpec33.pdf.

Georg Ferdinand Schneider, Georg Ambrosius Peßler, and
Simone Steiger. Modelling and simulation of standard-
ised control functions from building automation. In
Proc. of the 12-th Int. Modelica Conf., pages 209–218,
Prague, Czech Republic, may 2017. Modelica Association.
doi:DOI:10.3384/ecp17132209.

Siemens, 2000. APOGEE Powers Process Con-
trol Language (PPCL) User’s Manual. Siemens
Building Technologies, October 2000. URL
https://www.quia.com/files/quia/users/
hpiracer/AIRC65/PPCL_Users_Manual.

George Thomas. Creating an Open Controller with Se-
dona FrameworkTM. Contemporary Controls, February
2016. URL https://sedona-alliance.org/pdf/
WPSEDONAAA0.pdf.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and
Xiufeng Pang. Modelica Buildings library. Journal
of Building Performance Simulation, 7(4):253–270, 2014.
doi:DOI:10.1080/19401493.2013.765506.

Michael Wetter, Jianjun Hu, Milica Grahovac, Brent Eubanks,
and Philip Haves. OpenBuildingControl: Modeling feedback
control as a step towards formal design, specification, deploy-
ment and verification of building control sequences. In To
appear in: 2018 Building Performance Modeling Conference
and SimBuild, September 2018.

Y. Yang, A. Pinto, A. Sangiovanni-Vincentelli, and Q. Zhu. A
design flow for building automation and control systems. In
2010 31st IEEE Real-Time Systems Symposium, pages 105–
116, November 2010. doi:10.1109/RTSS.2010.26.

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417

24

Appendix A
The following statement, when saved as CustomPWithLimiter.mo, is the declaration of the composite block
shown in Figure 3

block CustomPWithLimiter
"Custom implementation of a P controller with variable output limiter"
parameter Real k "Constant gain";
CDL.Interfaces.RealInput yMax "Maximum value of output signal"

annotation (Placement(transformation(extent={{-140,20},{-100,60}})));
CDL.Interfaces.RealInput e "Control error"

annotation (Placement(transformation(extent={{-140,-60},{-100,-20}})));
CDL.Interfaces.RealOutput y "Control signal"

annotation (Placement(transformation(extent={{100,-10},{120,10}})));
CDL.Continuous.Gain gain(final k=k) "Constant gain"

annotation (Placement(transformation(extent={{-60,-50},{-40,-30}})));
CDL.Continuous.Min minValue "Outputs the minimum of its inputs"

annotation (Placement(transformation(extent={{20,-10},{40,10}})));
equation

connect(yMax, minValue.u1) annotation (
Line(points={{-120,40},{-120,40},{-20,40},{-20, 6},{18,6}}, color={0,0,127}));

connect(e, gain.u) annotation (
Line(points={{-120,-40},{-92,-40},{-62,-40}}, color={0,0,127}));

connect(gain.y, minValue.u2) annotation (
Line(points={{-39,-40},{-20,-40},{-20,-6}, {18,-6}}, color={0,0,127}));

connect(minValue.y, y) annotation (
Line(points={{41,0},{110,0}}, color={0,0,127}));

annotation (Documentation(info="<html>
<p>
Block that outputs <code>y = min(yMax, k*e)</code>,
where
<code>yMax</code> and <code>e</code> are real-valued input signals and
<code>k</code> is a parameter.
</p>
</html>"));
end CustomPWithLimiter;

Appendix B
The JSON representation of the composite control block shown in Figure 5 is as follows, where we omitted the
graphical annotations to keep the listing short.

[
{
"modelicaFile": "CustomPWithLimiter.mo",
"topClassName": "CustomPWithLimiter",
"comment": "Custom implementation of a P controller with variable output limiter",
"public": {
"parameters": [
{
"className": "Real",
"name": "k",
"comment": "Constant gain",
"annotation": {
"dialog": {
"tab": "General",
"group": "Parameters"
}

}
}

],
"models": [
{
"className": "CDL.Interfaces.RealInput",

DOI PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE
10.3384/ECP1815417 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA

25

"name": "yMax",
"comment": "Maximum value of output signal"

},
{
"className": "CDL.Interfaces.RealInput",
"name": "e",
"comment": "Control error"

},
{
"className": "CDL.Interfaces.RealOutput",
"name": "y",
"comment": "Control signal"

},
{
"className": "CDL.Continuous.Gain",
"name": "gain",
"comment": "Constant gain",
"modifications": [
{
"name": "k",
"value": "k",
"isFinal": true
}

]
},
{
"className": "CDL.Continuous.Min",
"name": "minValue",
"comment": "Outputs the minimum of its inputs"

}
]
},
"info": "<html>[omitted for briefity]</html>",
"connections": [
[
{ "instance": "yMax" },
{ "instance": "minValue", "connector": "u1" }

],
[
{ "instance": "e" },
{ "instance": "gain", "connector": "u" }

],
[
{ "instance": "gain", "connector": "y" },
{ "instance": "minValue", "connector": "u2" }

],
[
{ "instance": "minValue", "connector": "y" },
{ "instance": "y" }

]
]
}

]

 PROCEEDINGS OF THE 1ST AMERICAN MODELICA CONFERENCE DOI
 OCTOBER 9-10, 2018, CAMBRIDGE, MASSACHUSETTS, USA 10.3384/ECP1815417

26

