
University of South-Eastern Norway

TMCC

Page 1September 30, 2018 |

TMCC
Telemark Modeling and
Control Center

OpenModelica API for
Accessing Modelica Models
from Julia
Bernt Lie; USN

Arunkumar Palanisamy, Alachew Mengist, Lena Buffoni,
Martin Sjölund, Adeel Asghar, Adrian Pop, Peter Fritzson;
Linköping University

University of South-Eastern Norway

TMCC

Page 2September 30, 2018 |

Overview

• Why scripting OpenModelica?

• Design choices

• OMJulia design

• Examples

• Conclusions

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

University of South-Eastern Norway

TMCC

Page 3September 30, 2018 |

Why scripting OpenModelica?

Modelica

• Direct encoding of DAE models,
equation based

• Excellent support for libraries

Modelica based tools

• Varying level of eco system

• Poor support for random numbers

• Varying support for control design, etc.

• Some support of plotting

• Some support for optimization
(Optimica)

OpenModelica and scripting

• Basic scripting in OM

• Specialized scripting languages have
rich eco system
– MATLAB: large user base, good

documentation, expensive

– Python: large user base, medium
documentation, little support for
control community, free

– Julia: small but growing user base, scant
documentation, decent support for
control community, free

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

University of South-Eastern Norway

TMCC

Page 4September 30, 2018 |

Design choices

• Scripting strings
– Send OM commands

to OM via ZMQ

– OMPython, originally

• Script language API
– Commands native to

script language

– Glue tool to translate
to-from string OM
commands

– E.g., OMPython,
OMJulia

• Extend script language
with Modelica structures

– One-language solution

– Best possible synergy

– Script language may limit
possibilities

– Example:

• Modia for Julia

• Full integration requires
full use of type system

• Utilize dispatch & use
standard names (solve, not
simulate, etc.)

• Translate to script
– OM code translates to C

code, then compiles to
.exe

– Alternative: translate to
native script code?

– Advantage:
• Use existing Modelica

code

• Continue to write
Modelica code

– Disadvantage:
• Two-language solution

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

University of South-Eastern Norway

TMCC

Page 5September 30, 2018 |

OMJulia design

General

• Origin: Python API

• User demand:
– (Python API)

– MATLAB API

– Julia API

• Ease of maintenance
essential

• Tool developer needs to
“own” API

• Ease of maintenance may
require breaking best
practice for languages

API examples
> m =

OMJulia.OMCSession()

> m.ModelicaSystem(

"SeborgCSTR.mo",

"SeborgCSTR")

>

m.setInputs(["Tc=300",

”Ti=350”])

> m.simulate()

> tm, T, Tc, cA =

m.getSolutions(["time"

,"T","Tc","cA"]);

Compromises

• Julia type based + multiple
dispatch by design

• Desired Julia syntax:

– solve(model,…)

• Python is object oriented

• Typical Python syntax

– model.solve()

• Although not
recommended, object
syntax possible in Julia

• Compromise: object syntax
to ease maintenance

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

University of South-Eastern Norway

TMCC

Page 6September 30, 2018 |

Examples I: nonlinear reactor + PI tuning

Seborg reactor: PI control design:

• OMJulia linearization

• Julia ControlSystems, LTI tools

• Root locus PI tuning

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

University of South-Eastern Norway

TMCC

Page 7September 30, 2018 |

Examples II: state estimation of nonlinear reactor

• cEKF (constant gain) • EnKF (10 particles)• cEKF, low noise

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

University of South-Eastern Norway

TMCC

Page 8September 30, 2018 |

Examples III: linear control of nonlinear reactor

• PI control with constraint • LQG+I control with constraint

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

University of South-Eastern Norway

TMCC

Page 9September 30, 2018 |

Conclusions

• Scripting Modelica code expands
possibilities for analysis/user base

• Ease of maintenance -> compromises when
supporting several script languages

• Important to involve Modelica tool
developer to ensure compatibility

• Julia is an exciting new language:
– Control tools, fast execution, 2k> packages

• (Open)Modelica offers:
– Rich language for model description

– Good library support

Lie et al.: OpenModelica API for Accessing Modelica Models from Julia

