

Single Pipe Design for Integrated Community Energy Systems

Presented by: Ryan Rogers, Vick Lakhian, James Cotton

McMaster University – MASc Canddiate

A Unique Research Co-operative for a Unique Energy Landscape

•17 Industry Partners joined with McMaster and Carleton Universities to form an Energy Research Consortium to tackle the problems facing the Canadian energy landscape with a **communities first approach.**

•Funded by NSERC and OCE to address with a goal to redesign how we interact with energy while increasing resiliency and efficacy of our existing cities from a holistic energy viewpoint.

•\$2.7 million in funding was awarded to McMaster University to support leading energy system research for its <u>ICE-Harvest</u> <u>Systems Project</u>

•ICE-Harvest Systems promotes a VISION of a more sustainable community that produces, utilizes and manages its own energy systems

Potential Solution

Integrated Community Energy Systems – A Whole Systems Approach

ICE Harvest Facility

My Focus: Thermal Networks MIES

Four Pipe Thermal Network

My Focus: Thermal Networks MIES

One Pipe Thermal Network

Modelica Models

One Pipe Thermal Network

Four Pipe Thermal Network MIES

Case Study

McMaster Institute for Energy Studies - ICE Harvest

11 of 2 1

Case Study: 4PDH

Case Study: 4PDH

Energy Landscape

Peak Scheduling (Ontario)

Time Of Use Pricing

Off Peak: 6.5¢ per kWh (0:00 – 7:00, 19:00 – 24:00) **Mid Peak:** 9.4¢ per kWh (7:00 – 11:00, 17:00 – 19:00) **On Peak:** 13.2¢ per kWh (11:00 – 17:00)

Gas Pricing 13.18¢ per m³

14 of 2 1

Potential Problem

One Pipe Thermal Network

McMaster Institute for Energy Studies - ICE Harvest

15 of 2 1

Solution 1:

CHP and Back Up Boiler

Heating Supply:

On Peak: CHP used to provide heat for thermal network and electricity for heat pumps

Off Peak: Boiler used to provide heat and grid used to provide electricity for heat pumps (grid pricing)

Cooling Supply: Electric Chiller

Solution 2:

CHP and Ground Source Heat Pump

Heating Supply:

On Peak: CHP used to provide heat for thermal network and electricity for heat pumps

Off Peak: Ground Source Heat Pump used to provide heat and grid used to provide electricity for heat pumps

Cooling Supply: Electric Chiller

Results

Heating and Cooling

Daily Carbon Emissions

Black: Four Pipe Thermal Network **Green:** One Pipe Thermal Network

etwork Red: Solution 1: One Pipe Thermal Network (CHP and Boiler) Blue: Solution 2: One Pipe Thermal Network (CHP and McMaster Institute for Energy Studies - ICEH@atsPump) 18 of $\frac{2}{1}$

Daily Operational Costs

Black: Four Pipe Thermal Network **Green:** One Pipe Thermal Network

etwork Red: Solution 1: One Pipe Thermal Network (CHP and Boiler) Blue: Solution 2: One Pipe Thermal Network (CHP and McMaster Institute for Energy Studies - ICEH@atsPump) 19 of 2_1

Summary

One Pipe Thermal Networks

- Reduce carbon emissions by shifting heating load from boilers to heat pumps
- Cost more operationally, but can be made cost competitive by
 - changing the energy mix (local peaking power plant integration)
 - capturing waste energy (future area of research)
- Reduce the total energy demand by creating a shared energy loop that allows the cooling and heating demands to counteract each other.

Thank You For Listening

energy.mcmaster.c

а

rogersrb@mcmaste r.ca